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Chapter 1

Introduction

We review some basic facts about linear algebra, in particular on viewing matrix-vector multi-
plication as linear combination of column matrices; this plays an important role in understand-
ing key ideas behind many algorithms of numerical linear algebra. We review orthogonality,
where many of the best algorithms are based upon. Finally, we discuss about vector norms
and matrix norms, as these provide a way of measuring approximations and convergence of
numerical algorithm.

1.1 Linear Algebra

Let A ∈ Cm×n be an m × n matrix. The map x 7→ Ax is linear, i.e. the following holds for
any x, y ∈ Cn and scalars α, β ∈ C:

A(αx+ βy) = αAx+ βAy.

Conversely, any linear map from Cn to Cm can be expressed as multiplication by an m × n
matrix. The matrix-vector product b = Ax ∈ Cm is defined as

bi =
n∑
j=1

aijxj for every i = 1, . . . ,m.

It is not too difficult to see that matrix-vector product can also be view as linear combination
of columns {a1, . . . , anj} of A, i.e.

b = Ax =
n∑
j=1

xjaj. (1.1.1)

This easily generalises to matrix-matrix product B = AC, in which each column of B is a linear
combination of the columns of A. More precisely, if A ∈ Cm×l and C ∈ Cl×n, then B ∈ Cm×n

with

bij =
l∑

k=1

aikckj for each i = 1, . . . ,m, j = 1, . . . , n,

or equivalently,

bk =
l∑

j=1

cjkaj for each k = 1, . . . , n.

5
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Example 1.1.1. The outer product is the product of a column vector u ∈ Cm and a row
vector v∗ ∈ Cn, which gives a rank-one-matrix A = uv∗ ∈ Cm×n. Symbolically,

A =


u1
u2
...
um

 [v1 v2 . . . vn
]

=
[
v1u v2u . . . vnu

]
.

Definition 1.1.2. Given a matrix A ∈ Cm×n,

(a) The nullspace N (A) of A is the set of vectors x ∈ Cn such that Ax = 0.

(b) The range R(A) of A is the set of vectors y ∈ Cm such that y = Ax for some x ∈ Cn. It
is clear from (1.1.1) that R(A) is the vector space spanned by columns of A:

R(A) = span{a1, . . . , an}.

Consequently, R(A) is also called the column space of A.

(c) The column rank of A is the dimension of its column space. The row rank of A is the
dimension of its row space.

It can be shown that the column rank is always equal to the row rank of a matrix. Thus,
the rank of a matrix is well-defined. A matrix A ∈ Cm×n of full rank is one that has the
maximal possible rank min{m,n}. This means that a matrix of full rank with m ≥ n must
have n linearly independent columns.

Theorem 1.1.3. A matrix A ∈ Cm×n with m ≥ n has full rank if and only if it maps no two
distinct vectors to the same vector.

Proof. Suppose A is of full rank, then its columns {a1, . . . , an} form a linearly independent set
of vectors in Cn. Suppose Ax = Ay, we need to show that x = y but this is true since

A(x− y) = 0 =⇒
n∑
j=1

(xj − yj)aj = 0 =⇒ xj − yj = 0 for each j = 1, . . . , n.

Conversely, suppose A maps no two distinct vectors to the same vector. To show that A is
of full rank, it suffices to prove that its columns {a1, . . . , an} are linearly independent in Cn.
Suppose

n∑
j=1

xjaj = 0.

This is equivalent to Ax = 0 with x = (x1, . . . , xn)∗ ∈ Cn, and we see that x must be the zero
vector. Otherwise there exists a nonzero vector y ∈ Cn such that Ay = 0 = A(0) and this
contradicts the assumption.

�
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Theorem 1.1.4. For A ∈ Cm×m, the following are equivalent:

(a) A has an inverse A−1 ∈ Cm×m satisfying AA−1 = A−1A = Im.

(b) rank(A) = m.

(c) R(A) = Cm.

(d) N (A) = {0}.

(e) 0 is not an eigenvalue of A.

(f) 0 is not a singular value of A.

(g) det(A) 6= 0.

When writing the product x = A−1b, we should understand x as the unique vector that
satisfies the equation Ax = b. This means that x is the vector of coefficients of the unique
linear expansion of b in the basis of columns of A. Multiplication by A−1 is a change of basis
operation. More precisely, if we view b as coefficients of the expansion of b in {e1, . . . , em},
then multiplication of A−1 results in coefficients of the expansion of b in {a1, . . . , am}.

1.2 Orthogonal Vectors and Matrices

Given a matrix A ∈ Cm×n, we denote its Hermitian conjugate or adjoint by A∗. For
example,

A =

a11 a12
a21 a22
a31 a32

 =⇒ A∗ =

[
ā11 ā21 ā31
ā12 ā22 ā32

]
.

A is said to be Hermitian if A = A∗. Note that a Hermitian matrix must be square by
definition. Among the nice properties about finite-dimensional vector space is the notion of
orthogonality. In a plane R2, two vectors are orthogonal if they make an angle of 90◦; this
can be extended into higher-dimensional Euclidean space by introducing the notion of inner
product.

Definition 1.2.1.

(a) The inner product of two column vectors x, y ∈ Cm is defined as

(x, y) = x∗y =
m∑
j=1

x̄jyj.

(b) The Euclidean length of x ∈ Cn is defined as

‖x‖2 =
√
x∗x =

(
m∑
j=1

|xj|2
) 1

2

.
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(c) The cosine of the angle α between x and y can be expressed in terms of the inner product

cos(α) =
x∗y

‖x‖2‖y‖2
.

Remark 1.2.2. Over C, the inner product is sesquilinear, i.e. x 7→ (x, z) is linear and
y 7→ (z, y) is conjugate linear. Over R, the inner product is bilinear.

Definition 1.2.3. A set of nonzero vectors S is said to be orthogonal if its elements are
pairwise orthogonal, that is,

x, y ∈ S, x 6= y =⇒ (x, y) = x∗y = 0.

S is said to be orthonormal if S is orthogonal and ‖x‖2 = 1 for every x ∈ S.

Theorem 1.2.4. The vectors in an orthogonal set S are linearly independent. Consequently,
if an orthogonal set S ⊂ Cm contains m vectors, then it is a basis for Cm.

Proof. Suppose, by contradiction, that the set of orthogonal vectors S is not linearly indepen-
dent. This means that at least one of the vectors vk ∈ S can be written as a non-trivial linear
combination of the remaining vectors in S, i.e.

vk =
∑
j 6=k

αjvj.

Taking the inner product of vk against vk and using orthogonality of the set S gives

(vk, vk) =
∑
j 6=k

(αjvj, vk) = 0,

which contradicts the assumption that all vectors in S are nonzero.
�

An important consequence of inner product is that it can be used to decompose arbitrary
vectors into orthogonal components. More precisely, suppose {q1, q2, . . . , qn} is an orthonormal
set, and let v be an arbitrary vector. We decompose v into (n+ 1) orthogonal components as

v = r +
n∑
j=1

(qj, v)qj = r +
n∑
j=1

(qjq
∗
j )v. (1.2.1)

We see that r is the part of v orthogonal to {q1, q2, . . . , qn} and for every j = 1, 2, . . . , n, (qj, v)qj
is the part of v in the direction of qj.

If {qj} is a basis for Cm, then n must be equal to m and r must be the zero vector, so v is
completely decomposed into m orthogonal components in the direction of the qj. In (1.2.1), we
see that we have two different expressions. In the first case, we view v as a sum of coefficients
q∗j v times vectors qj. In the second case, we view v as a sum of orthogonal projections of v
onto the various directions qj. The jth projection operation is achieved by the very special
rank-one matrix qjq

∗
j .



Introduction 9

A square matrix Q ∈ Cm×m is unitary (or orthogonal in the real case) if Q∗ = Q−1,
that is, Q∗Q = QQ∗ = Im. In terms of the columns of Q, we have the relation q∗i qj = δij.
This means that columns of a unitary matrix Q form an orthonormal basis for Cm. In the real
case, multiplication by an orthogonal matrix Q corresponds to a rigid rotation if det(Q) = 1
or reflection if det(Q) = −1.

Lemma 1.2.5. The inner product is invariant under unitary transformation, i.e. for any
unitary matrix Q ∈ Cm×m, (Qx,Qy) = (x, y) for any x, y ∈ Cm. Such invariance means that
angles between vectors and their lengths are preserved under unitary transformation.

Proof. We simply expand (Qx,Qy) and obtain

(Qx,Qy) = (Qx)∗Qy = x∗Q∗Qy = x∗y = (x, y).

In particular, we have that

‖Qx‖2 = ‖x‖2 for any x ∈ Cm.

�

Remark 1.2.6. Note that the lemma is still true for any matrices with orthornormal columns.

1.3 Norms and Inequalities

We already see from Section 1.2 on how to quantify the length of a vector using the inner prod-
uct, called the Euclidean length, which is a generalisation of distance in a plane. In practice,
it is useful to consider other notions of length in a vector space, which give rise to the following:

Definition 1.3.1. A norm is a function ‖ · ‖ : Cn −→ R satisfying the following properties for
all vectors x, y ∈ Cn and scalars α ∈ C:

(N1) ‖x‖ ≥ 0 and ‖x‖ = 0 =⇒ x = 0.

(N2) ‖αx‖ = |α|‖x‖.

(N3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Below are a few important examples of vector norms in Cn:

‖x‖1 =
n∑
j=1

|xj| (l1 norm)

‖x‖2 =

(
n∑
j=1

|xj|2
) 1

2

(l2 norm)

‖x‖∞ = max
1≤j≤n

|xj| (l∞ norm)
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‖x‖p =

(
n∑
j=1

|xj|p
) 1

p

, p ≥ 1. (lp norm)

For any nonsingular matrix W ∈ Cn×n, we can define the weighted p-norms, given by

‖x‖W = ‖Wx‖p =

(
n∑
i=1

∣∣∣∣∣
n∑
j=1

wijxj

∣∣∣∣∣
p) 1

p

.

1.3.1 Matrix Norms

We can easily generalise vector norms to matrix norms acting on the vector space of all matri-
ces A ∈ Cm×n. There is a special norm that is sometimes more useful than the general matrix
norms, which is defined by viewing matrix as a linear operator from Cn to Cm:

Definition 1.3.2. Given A ∈ Cm×n, the induced matrix norm ‖A‖ is defined as

‖A‖ = sup
x∈Cn,x 6=0

‖Ax‖
‖x‖

= sup
x∈Cn,‖x‖=1

‖Ax‖.

Equivalently, ‖A‖ is the smallest number C ≥ 0 such that the inequality

‖Ax‖ ≤ C‖x‖ holds for all x ∈ Cn.

Geometrically, ‖A‖ is the maximum factor by which A can “stretch” a vector x.

Example 1.3.3. Let D ∈ Cm×m be a diagonal matrix

D =


d1

d2
. . .

dm

 .
To find the ‖D‖2 geometrically, observe that the image of the 2-norm unit sphere under D
is an m-dimensional ellipse whose semiaxis lengths are given by the numbers |dj|. The unit
vectors amplified most by D are those that are mapped to the longest semiaxis of the ellipse,
of length max{|dj|}. Thus, we have that

‖D‖2 = max
1≤j≤m

|dj|.

This result for the 2-norm generalises to any p ≥ 1: if D is diagonal, then

‖D‖p = max
1≤j≤m

|dj|.

We can prove this algebraically. First,

‖Dx‖pp =
m∑
j=1

|xjdj|p ≤ max
1≤j≤m

|dj|p
m∑
j=1

|xj|p =

(
max
1≤j≤m

|dj|p
)
‖x‖pp.
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Taking the pth root of each side, and then the supremum over all x ∈ Cm with ‖x‖p = 1 yields
the upper bound

‖D‖p ≤ max
1≤j≤m

|dj|.

To obtain ‖D‖p ≥ max
1≤j≤m

|dj|, we choose the standard basis vector x = ek, where k is such that

|dk| is the largest diagonal entry. Note that ‖ek‖p = 1 and

‖D‖p ≤
‖Dek‖p
‖ek‖p

= ‖Dek‖p = ‖dkek‖p = |dk| = max
1≤j≤m

|dj|.

Lemma 1.3.4. For any A ∈ Cm×n, the induced matrix 1-norm and ∞-norm are equal to the
“maximum column sum” and “maximum row sum” of A respectively, i.e.

‖A‖1 = max
1≤j≤n

‖aj‖1.

‖A‖∞= max
1≤i≤m

‖a∗i ‖1.

Proof. Let {a1, . . . , an} be columns of A. Viewing Ax as linear combinations of {a1, . . . , an}
gives

‖Ax‖1 =

∥∥∥∥∥
n∑
j=1

ajxj

∥∥∥∥∥
1

≤
n∑
j=1

|xj|‖aj‖1 ≤ max
1≤j≤n

‖aj‖1
n∑
j=1

|xj|

=

(
max
1≤j≤n

‖aj‖1
)
‖x‖1.

Taking supremum over all x ∈ Cn with ‖x‖1 = 1, we have that

‖A‖1 ≤ max
1≤j≤n

‖aj‖1.

To obtain ‖A‖1 ≥ max
1≤j≤n

‖aj‖1, we choose the standard basis vector x = ek, where k is such

that ‖ak‖1 is maximum. Note that ‖ek‖1 = 1 and

‖A‖1 ≥
‖Aek‖1
‖ek‖1

= ‖Aek‖1 = ‖ak‖1 = max
1≤j≤n

‖aj‖1.

For the induced ∞-norm, we first write Ax = b = (b1, b2, . . . , bm)∗ ∈ Cm. Using the
definition of a matrix-vector product, we have that for any i = 1, . . . ,m

|bi| =

∣∣∣∣∣
n∑
j=1

aijxj

∣∣∣∣∣ ≤
n∑
j=1

|aij||xj| ≤ max
1≤j≤n

|xj|

(
n∑
j=1

|aij|

)

= ‖x‖∞

(
n∑
j=1

|aij|

)

Taking supremum over all i = 1, . . . ,m, we obtain

max
1≤i≤m

|bi| = ‖b‖∞ = ‖Ax‖∞ ≤

(
max
1≤i≤m

n∑
j=1

|aij|

)
‖x‖∞.
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Taking supremum over all x ∈ Cn of norm 1, we have

‖A‖∞ ≤ max
1≤i≤m

n∑
j=1

|aij|.

To obtain ‖A‖∞ ≥ max
1≤i≤m

n∑
j=1

|aij|, choose x = (1, . . . , 1)∗ ∈ Cn. Note that ‖x‖∞ = 1 and

‖A‖∞ ≥
‖Ax‖∞
‖x‖∞

= ‖Ax‖∞ = max
1≤i≤m

n∑
j=1

|aij|.

�

1.3.2 Cauchy-Schwarz and Holder Inequalities

Inner products can be bounded in terms of p-norms using Hölder’s inequality and Cauchy-
Schwarz inequality, the latter being the special case of Hölder’s inequality. Note that these
two inequalities are tight in the sense that these inequalities become equalities for certain
choices of vectors.

Theorem 1.3.5 (Young’s inequality). Let p, q > 1 such that
1

p
+

1

q
= 1. For any two nonneg-

ative real numbers a, b, we have

ab ≤ ap

p
+
bq

q
. (Young)

Proof. Observe that the inequality is trivial if either a or b are zero, so suppose both a and b

are any positive real numbers. Choose any p, q > 1 such that
1

p
+

1

q
= 1, the constraint on p

and q suggests a possible convexity argument. Indeed, using the fact that exponential function
is a convex function, we have that

ab = exp(ln(ab)) = exp(ln(a) + ln(b))

= exp

(
p

p
ln(a) +

q

q
ln(b)

)
≤ 1

p
exp(p ln(a)) +

1

q
exp(q ln(b))

=
ap

p
+
bq

q
.

Since p, q > 1 were arbitrary numbers satisfying
1

p
+

1

q
= 1, this proves the Young’s inequality.

�

Theorem 1.3.6 (Hölder’s inequality). Let p, q > 1 such that
1

p
+

1

q
= 1. For any u, v ∈ Cn,

we have

|u∗v| =

∣∣∣∣∣
n∑
j=1

u∗jvj

∣∣∣∣∣ ≤ ‖u‖p‖v‖q. (Hölder)
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Proof. Observe that the inequality is trivial if either u or v are the zero vector, so suppose

u, v 6= 0. Choose any p, q > 1 such that
1

p
+

1

q
= 1. Young’s inequality (Young) yields

|a∗jbj| = |aj||bj| ≤
|aj|p

p
+
|bj|q

q
.

Summing over j = 1, . . . , n, we get

n∑
j=1

|a∗jbj| ≤
1

p

(
n∑
j=1

|aj|p
)

+
1

q

(
n∑
j=1

|bj|q
)
.

In particular, for any a = (a1, . . . , an)∗, b = (b1, . . . , bn)∗ ∈ Cn satisfying

‖a‖pp =
n∑
j=1

|aj|p = 1 =
n∑
j=1

|bj|q = ‖b‖qq, (1.3.1)

we have

n∑
j=1

|a∗jbj| ≤
1

p
+

1

q
= 1. (1.3.2)

Now, for any nonzero u = (u1, . . . , un)∗, v = (v1, . . . , vn)∗ ∈ Cn, define vectors a = (ã1, . . . , ãn)∗, b =
(b̃1, . . . , b̃n)∗ such that

ãj =
uj
‖u‖p

, b̃j =
vj
‖v‖q

for all j = 1, . . . , n.

By construction, both a and b satisfy (1.3.1) and substituting ãj, b̃j into (1.3.2) yields

1

‖u‖p‖v‖q

n∑
j=1

|u∗jvj| ≤ 1 =⇒

∣∣∣∣∣
n∑
j=1

u∗jvj

∣∣∣∣∣ ≤
n∑
j=1

|ujvj| ≤ ‖u‖p‖v‖q.

Since u, v were arbitrary nonzero vectors in Cn, this proves the Hölder’s inequality.
�

Example 1.3.7. Consider a matrix A containing a single row, i.e. A = a∗, where a 6= 0 is a
fixed column vector in Cn. For any x ∈ Cn, Cauchy-Schwarz inequality yields

‖Ax‖2 = |a∗x| ≤ ‖a‖2‖x‖2.

Taking supremum over all x ∈ Cn of norm 1, we get ‖A‖2 ≤ ‖a‖2. To obtain ‖A‖2 ≥ ‖a‖2,
choose the particular x = a. Then

‖A‖2 ≥
‖Aa‖2
‖a‖2

=
‖a‖22
‖a‖2

= ‖a‖2.
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Example 1.3.8. Consider the rank-one outer product A = uv∗, where u ∈ Cm and v ∈ Cn.
For any x ∈ Cn, Cauchy-Schwarz inequality yields

‖Ax‖2 = ‖uv∗x‖2 = |v∗x|‖u‖2 ≤ ‖u‖2‖v‖2‖x‖2.

Taking supremum over all x ∈ Cn of norm 1, we get ‖A‖2 ≤ ‖u‖2‖v‖2. To obtain ‖A‖2 ≥
‖u‖2‖v‖2, choose the particular x = v. Then

‖A‖2 ≥
‖Av‖2
‖v‖2

=
‖uv∗v‖2
‖v‖2

=
‖u‖2‖v‖22
‖v‖2

= ‖u‖2‖v‖2.

Lemma 1.3.9. Let A ∈ Cm×l, B ∈ Cl×n. The induced matrix norm of AB satisfies the
inequality

‖AB‖ ≤ ‖A‖‖B‖

Consequently, the induced matrix norm of A satisfies

‖An‖ ≤ ‖A‖n for any n ≥ 1.

Proof. For any x ∈ Cn,
‖ABx‖ ≤ ‖A‖‖Bx‖ ≤ ‖A‖‖B‖‖x‖.

Taking supremum over all x ∈ Cn of norm 1 gives the desired result.
�

This does not hold for matrix norms in general. Choose

‖A‖ = max
1≤i,j≤m

|aij| and A = B =

[
1 1
1 1

]
.

Then ‖AB‖ = 2 but ‖A‖‖B‖ = 1. An important matrix norm which is not induced by any
vector norm is the Hilbert-Schmidt or Frobenius norm, defined by

‖A‖F =

(
m∑
i=1

n∑
j=1

|aij|2
) 1

2

.

If {a1, . . . , an} are the columns of A, we have

‖A‖F =

(
n∑
j=1

‖aj‖22

) 1
2

.

An equivalent definition of ‖ · ‖F is in terms of trace

‖A‖F =
√

tr(A∗A) =
√

tr(AA∗).

Viewing the matrix A ∈ Cm×n as a vector in Cmn, the Frobenius norm can be seen as the usual
l2 norm. Replacing l2 norm with lp norm gives rise to the Schatten p-norm.
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Lemma 1.3.10. For any A ∈ Cm×l, B ∈ Cl×n, the Frobenius norm of AB satisfies

‖AB‖F ≤ ‖A‖F‖B‖F .

Proof. Let C = AB = (cij), where the entries of C is given by cij = a∗i bj with a∗i , bj the ith-row
and jth-column of the matrix A and B respectively. Cauchy-Schwarz inequality gives

|cij| ≤ ‖ai‖2‖bj‖2.

Squaring both sides and summing over all i, j, we obtain

‖AB‖2F =
m∑
i=1

n∑
j=1

|cij|2 ≤
m∑
i=1

n∑
j=1

(‖ai‖2‖bj‖2)2

=

(
m∑
i=1

‖ai‖22

)(
n∑
j=1

‖bj‖22

)
= ‖A‖2F‖B‖2F .

�

Theorem 1.3.11. For any A ∈ Cm×n and unitary matrix Q ∈ Cm×m, V ∈ Cn×n, we have

‖QA‖2 = ‖A‖2 = ‖AV ‖2, ‖QA‖F = ‖A‖F .

Proof. Using the trace definition of ‖ · ‖F ,

‖QA‖2F = tr[(QA)∗(QA)] = tr[A∗Q∗QA] = tr(A∗A) = ‖A‖2F .

Since the 2-norm is invariant under unitary transformation,

‖QA‖2 = sup
x∈Cn,‖x‖2=1

‖QAx‖2 = sup
x∈Cn,‖x‖2=1

‖Ax‖2 = ‖A‖2.

For any x ∈ Cn, let y = V x ∈ Cn. Then x = V ∗y and ‖x‖2 = ‖V ∗y‖2 = ‖y‖2 since unitary
transformation preserves ‖ · ‖2. Consequently,

‖AV ‖2 = sup
x∈Cn,‖x‖2=1

‖AV x‖2 = sup
y∈Cn,‖y‖2=1

‖Ay‖2 = ‖A‖2.

�
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1.4 Problems

1. Show that if a matrix A is both triangular and unitary, then it is diagonal.

Solution: The statement is trivial if A ∈ Cm×m is both upper and lower triangular, so
suppose A is upper-triangular. This implies that A∗ = A−1 is lower-triangular. The
result then follows if we show that A−1 is also upper-triangular. Since A−1A = Im×m,
we have that b1 . . . bm

a1 . . . am

 =

e1 . . . em

 ,
where aj, bj are columns of A and A−1 respectively and ej are the standard basis
vectors in Cm. Interpreting ej as the linear combination of the columns bj together
with the assumption that A is upper-triangular, we obtain the relation

ej =
m∑
i=1

aijbi =

j∑
i=1

aijbi for any j = 1, . . . ,m.

More precisely, we have

e1 = a11b1

e2 = a12b1 + a22b2
... =

...
...

em = a1mb1 + a2mb2 + . . .+ ammbm.

This implies that bij = 0 for all i > j, j = 1, . . . ,m, i.e. A−1 is upper-triangular.

2. Let A ∈ Cm×m be Hermitian. An eigenvector of A is a nonzero vector x ∈ Cm such that
Ax = λx for some λ ∈ C, the corresponding eigenvalue.

(a) Prove that all eigenvalues of A are real.

Solution: Let λ be any eigenvalue of a Hermitian matrix A ∈ Cm×m, with
corresponding eigenvector x ∈ Cm. Since Ax = λx, we have

(λx)∗x = (Ax)∗x

λ̄(x∗x) = x∗A∗x

= x∗Ax
[
A is Hermitian.

]
= λx∗x.

Since x 6= 0, x∗x = ‖x‖22 6= 0 and we must have λ = λ̄, i.e. λ is real. Since λ
was arbitrary eigenvalue of A, the result follows.
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(b) Prove that if x and y are eigenvectors corresponding to distinct eigenvalues, then x
and y are orthogonal.

Solution: Suppose x and y are eigenvectors of a Hermitian matrix A corre-
sponding to distinct eigenvalues λ and µ respectively, i.e.

Ax = λx and Ay = µy.

Using the result that eigenvalues of a Hermitian matrix are real,

λx∗y = (λx)∗y = (Ax)∗y = x∗A∗y = x∗Ay = µx∗y.

Consequently, x∗y = 0 since λ 6= µ. Since λ, µ were arbitrary distinct eigenvalues
of A, the result follows.

3. What can be said about the eigenvalues of a unitary matrix?

Solution: Choosea any eigenvalue λ of a unitary matrix Q with corresponding eigen-
vector x 6= 0. Since the 2-norm is invariant under unitary transformations,

|λ|‖x‖2 = ‖λx‖2 = ‖Qx‖2 = ‖x‖2 =⇒ |λ| = 1.

Hence, the eigenvalues of a unitary matrix must lie on the unit circle in C.

4. If u and v are m-vectors, the matrix A = I + uv∗ is known as a rank-one perturbation of
the identity. Show that if A is nonsingular, then its inverse has the form A−1 = I +αuv∗

for some scalar α, and give an expression for α. For what u and v is A singular? If it is
singular, what is N (A)?

Solution: The result is trivial if either u or v is the zero vector, so suppose u, v 6= 0.
Suppose A is nonsingular, with its inverse A−1 = I + αuv∗, then

I = AA−1 = (I + uv∗)(I + αuv∗)

= I + αuv∗ + uv∗ + αuv∗uv∗

= I + uv∗(1 + α + αv∗u).

Since uv∗ 6= 0m, we must have

1 + α + αv∗u = 0 =⇒ α(1 + v∗u) = −1 =⇒ α = − 1

1 + v∗u
.

Note that division by 1 + v∗u is allowed here, since 1 + v∗u 6= 0 if A is nonsingular,
as we shall prove now. Suppose A is singular, there exists a nonzero x ∈ Cm such
that Ax = 0. In particular, we have

Ax = (I + uv∗)x = 0 =⇒ uv∗x = −x. (1.4.1)

For any nonzero scalars β ∈ C, let x = βu. Substituting this into (1.4.1) yields

uv∗(βu) = −βu =⇒ ��β(v∗u)u = −��βu =⇒ (v∗u)u = −u.
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Hence, we see that if v∗u = −1, then A is singular and N (A) = span(u).

5. Let ‖ · ‖ denote any norm on Cm and also the induced matrix norm on Cm×m. Show that
ρ(A) ≤ ‖A‖, where ρ(A) is the spectral radius of A, i.e., the largest absolute value |λ| of
an eigenvalue λ of A.

Solution: Choose any eigenvalue λ of a matrix A ∈ Cm×m, with corresponding
eigenvector x ∈ Cm. Since Ax = λx, we have

|λ|‖x‖ = ‖λx‖ = ‖Ax‖ ≤ ‖A‖‖x‖,

where we use the assumption that ‖A‖ is an induced matrix norm for the inequality.
Dividing each side of the inequality by ‖x‖ 6= 0 yields |λ| ≤ ‖A‖. The desired
inequality follows from taking the supremum over all eigenvalues of A.

6. (a) Let N(x) := ‖·‖ be any vector norm on Cn (or Rn). Show that N(x) is a continuous
function of the components x1, x2, . . . , xn of x.

Solution: Consider the canonical basis {e1, . . . , en} for Cn. Then

x− y =
n∑
j=1

(xj − yj)ej,

and ∣∣∣‖x‖ − ‖y‖∣∣∣ ≤ ‖x− y‖ ≤ n∑
j=1

|xj − yj|‖ej‖ ≤ ‖x− y‖∞

(
n∑
j=1

‖ej‖

)
.

Continuity follows by taking ‖x− y‖∞ −→ 0.

(b) Prove that if W ∈ Cm×m is an arbitrary nonsingular matrix, and ‖ · ‖ is any norm
on Cm, then ‖x‖W = ‖Wx‖ is a norm on Cm.

Solution: Let W ∈ Cm×m be an arbitrary nonsingular matrix, and wj the
jth column of W . Let ‖ · ‖ be any norm on Cm, and x = (x1, . . . , xm)∗, y =
(y1, . . . , ym)∗ ∈ Cm. It is clear that ‖x‖W = ‖Wx‖ ≥ 0. Suppose ‖x‖W = 0.
Then

0 = ‖x‖W = ‖Wx‖ =⇒ Wx = 0.

Viewing Wx as a linear combination of columns of W , we obtain

0 = Wx =
m∑
j=1

xjwj.

Since W is nonsingular, its columns {w1, w2, . . . , wm} form a linearly indepen-
dent set of vectors in Cm and this implies that xj = 0 for all j = 1, . . . ,m.
Hence, ‖x‖W = 0 =⇒ x = 0. For any α ∈ C we have that

‖αx‖W = ‖W (αx)‖ = ‖α(Wx)‖ = |α|‖Wx‖ = |α|‖x‖W .
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Finally, the triangle inequality of ‖ · ‖ gives

‖x+ y‖W = ‖Wx+Wy‖ ≤ ‖Wx‖+ ‖Wy‖ = ‖x‖W + ‖y‖W .

Hence, we conclude that ‖ · ‖W is a norm on Cm.

7. (a) Explain why ‖I‖ = 1 for every induced matrix norm.

Solution: It follows directly from the definition of an induced matrix norm.
More precisely,

‖I‖ = sup
x∈Cm,x 6=0

‖Ix‖
‖x‖

= sup
x∈Cm,x 6=0

‖x‖
‖x‖

= 1.

(b) What is ‖In×n‖F ?

Solution: From the definition of Frobenius norm,

‖In×n‖F =

(
n∑
i=1

n∑
j=1

|aij|2
) 1

2

=

(
n∑
j=1

|1|2
) 1

2

=
√
n.

(c) Show that Frobenius norm is not induced by any vector norm.

Solution: If ‖ ·‖F were induced by any vector norm, then ‖I‖F must equal to 1
from 7(a). But 7(b) shows that for every n > 1, ‖I‖F =

√
n 6= 1. Consequently,

Frobenius norm is not induced by any vector norm on Cn for n > 1.
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Chapter 2

Matrix Decomposition and Least
Squares Problems

Matrix decomposition has been of fundamental importance in modern sciences. In the context
of numerical linear algebra, matrix decomposition serves the purpose of rephrasing through a
series of easier subproblems a task that may be relatively difficult to solve in its original form,
for instance solving linear systems. In the context of applied statistics, matrix decomposition
offers a way of obtaining some form of low-rank approximation to some large “data” matrix
containing numerical observations; this is crucial in understanding the structure of the matrix,
in particular exploring and identifying the relationship within data. In this chapter, we will
study the singular value decomposition (SVD) and QR factorisation, and demonstrate how to
solve linear least squares problems using these decompositions.

2.1 The Singular Value Decomposition

Throughout this section, we will assume that A ∈ Cm×n,m ≥ n has full rank for simplicity.
The central theme of this section is that SVD is just another formulation of the following
geometric fact in terms of linear algebra:

The image of the unit sphere under linear transformations is a hyperellipse.

It involves three geometrical transformations: rotation, reflection and scaling. Given A ∈
Cm×n, m ≥ n, there exists a decomposition, called reduced singular value decomposition,
or reduced SVD of the form A = ÛΣ̂V ∗, where

Û =

u1 u2 . . . un

 ∈ Cm×n.

Σ̂ =


σ1

σ2
. . .

σn

 ∈ Rn×n.

21
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V =

v1 v2 . . . vn

 ∈ Cn×n.

(a) {u1, u2, . . . , un} and {v1, v2, . . . , vn} are the left and right singular vectors of A;

columns of Û are orthonormal, V is unitary and Û∗Û = V ∗V = In;

(b) {σj}nj=1 are singular values of A, with σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0. These are the lengths
of the n principal semiaxes of the hyperellipse in the case of real matrices A.

(c) These singular vectors and singular values satisfy the relation

Avj = σjuj, j = 1, . . . , n. (2.1.1)

Example 2.1.1. Consider any matrix A ∈ C2×2. It is clear that H = A∗A ∈ C2×2 is Hermitian.
Moreover, for any x ∈ C2 we have

x∗Hx = x∗(A∗A)x = (Ax)∗(Ax) = ‖Ax‖22 ≥ 0.

Consequently, H has nonnegative eigenvalues λ1, λ2 and H = V DV ∗ = V Σ2V ∗, where V is
unitary and

D =

[
λ1 0
0 λ2

]
, Σ =

[
σ1 0
0 σ2

]
,

such that σ1 ≥ σ2 ≥ 0 and σ2
1 = λ1, σ

2
2 = λ2. Assume σ1 ≥ σ2 > 0, we claim that U = AV Σ−1.

Indeed,

U∗U = (Σ−1V ∗A∗)(AV Σ−1) = Σ−1V ∗HV Σ−1

= Σ−1Σ2Σ−1 = I2.

Hence, AV = UΣ =⇒ A = UΣV ∗.

2.1.1 Geometric Intepretation

[Include diagrams] Let S be the unit circle in Rn, then any x ∈ S can be written as

x = V x̂ =
[
v1 v2

] [cos θ
sin θ

]
.

Observe that ‖x̂‖2 = 1 since cos2 θ + sin2 θ = 1. It follows from AV = UΣ that

Ax = A(v1 cos θ + v2 sin θ) = σ1u1 cos θ + σ2u2 sin θ.

In terms of (v1, v2) coordinates, the vector (cos θ, sin θ) gets mapped onto (z1, z2) = (σ1 cos θ, σ2 sin θ)
in (u1, u2) coordinates. Moreover,(

z1
σ1

)2

+

(
z2
σ2

)2

= cos2 θ + sin2 θ = 1,
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i.e. S is being transformed to ellipse. We claim that ‖A‖2 = σ1. On one hand, we obtain using
orthonormality of {u1, u2}

‖Ax‖22 = (σ1u1 cos θ + σ2u2 sin θ)∗(σ1u1 cos θ + σ2u2 sin θ)

= σ2
1 cos2 θu∗1u1 + σ2

2 sin2 θu∗2u2

≤ σ2
1 cos2 θ + σ2

1 sin2 θ = σ2
1.

On the other hand, choosing x = v1 gives ‖Av1‖22 = ‖σ1u1‖22 = σ2
1.

We see that the image of unit circle under A is an ellipse in the 2-dimensional subspace of
Rm defined by span{u1, u2}. If A ∈ Rm×n is of full rank with m ≥ n, then the image of the
unit sphere in Rn under A is a hyperellipsoid in Rm.

2.1.2 Full SVD

From the reduced SVD of A, columns of Û form an orthonormal set in Cm, but Û is not unitary.
By adjoining an additional m−n orthonormal columns, Û can be extended to a unitary matrix
U ∈ Cm×m. Consequently, we must concatenated Σ̂ together with an additional m − n rows
of zero vector so that the product remains unchanged upon replacing Û by U . This process
yields the full SVD of A = UΣV ∗, where

U =

Û un+1 . . . um

 ∈ Cm×m.

Σ =


Σ̂
0∗

...
0∗

 ∈ Rm×n

V =

v1 v2 . . . vn

 ∈ Cn×n.

Note that in full SVD form, Σ has the same size as A, and U, V are unitary matrices.

Theorem 2.1.2. Every matrix A ∈ Cm×n can be factored as A = UΣV ∗, where U ∈ Cm×m

and V ∈ Cn×n are unitary and Σ ∈ Rm×n is a rectangular matrix whose only nonzero entries
are nonnegative entries on its diagonal.

Proof. The statement is trivial if A is the zero matrix, so assume A 6= 0. Let σ1 = ‖A‖2 > 0,
there exists v1 ∈ Cn such that ‖v1‖2 = 1 and ‖Av1‖2 = ‖A‖2 = σ1. Such v1 exists since the
induced matrix norm is by definition a minimisation problem of a continuous functional (in
this case the norm) over a compact nonempty subset of Cn. Define u1 = Av1/σ1 ∈ Cm, clearly
u1 6= 0 and ‖u1‖2 = 1 by construction.
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Consider any extension of u1, v1 to an orthonormal basis {u1, u2, . . . , um}, {v1, v2, . . . , vn} of
Cm,Cn respectively. Construct the following unitary matrices

Û1 =
[
u2 . . . um

]
∈ Cm×(m−1), V̂1 =

[
v2 . . . vn

]
∈ Cn×(n−1).

and define two unitary matrices

U1 =
[
u1 Û1

]
∈ Cm×m, V1 =

[
v1 V̂1

]
∈ Cn×n.

We then have:

A1 := U∗1AV1 =

[
u∗1
Û∗1

]
A
[
v1 V̂1

]
=

[
u∗1Av1 u∗1AV̂1
Û∗1Av1 Û∗1AV̂1

]

=

[
σ1u

∗
1u1 w∗

σ1Û
∗
1u1 Â

]
=

[
σ1 w∗

0 Â

]
,

where w ∈ C(n−1) and Â ∈ C(m−1)×(n−1). We claim that w = 0. The first thing is to observe
that ∥∥∥∥A1

[
σ1
w

]∥∥∥∥2
2

=

∥∥∥∥[σ2
1 + w∗w

Âw

]∥∥∥∥2
2

= (σ2
1 + w∗w)2 + ‖Âw‖22

≥ (σ2
1 + w∗w)2

= (σ2
1 + w∗w)

∥∥∥∥[σ1w
]∥∥∥∥2

2

Since ‖A1‖2 = ‖U∗1AV1‖2 = ‖A‖2 = σ1, we have

0 ≤ (σ2
1 + w∗w)

∥∥∥∥[σ1w
]∥∥∥∥2

2

≤
∥∥∥∥A1

[
σ1
w

]∥∥∥∥2
2

≤ σ2
1

∥∥∥∥[σ1w
]∥∥∥∥2

2

,

which implies that

0 ≤ σ2
1 + w∗w ≤ σ2

1,

i.e. w∗w = 0 =⇒ w = 0.
We now proceed by induction. The result is trivial if m = 1 or n = 1. Suppose Â has an

SVD

U∗2 ÂV2 = Σ2 ∈ R(m−1)×(n−1),

where U2 ∈ C(m−1)×(m−1), V2 ∈ C(n−1)×(n−1) are unitary. Observe that

U∗1AV1 =

[
σ1 0∗

0 Â

]
=

[
σ1 0∗

0 U2Σ2V
∗
2

]
=

[
1 0∗

0 U2

] [
σ1 0∗

0 Σ2

] [
1 0∗

0 V ∗2

]
.
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Consequently, the unitary matrices U, V are naturally defined as

U = U1

[
1 0∗

0 U2

]
=
[
u1 Û1

] [1 0∗

0 U2

]
=

[
u1
Û1U2

]
∈ Cm×m

V = V1

[
1 0∗

0 V2

]
=
[
v1 V̂1

] [1 0∗

0 V2

]
=
[
v1 V̂1V2

]
∈ Cn×n.

Since product of unitary matrices are unitary, we only need to show that the vector u1 is orthog-
onal to each column u2, . . . , um of the matrix Û1U2, but this must be true since {u1, u2, . . . , um}
is an orthonormal basis by construction. A similar argument shows that V is also unitary.

�

Remark 2.1.3. In the case m ≤ n, we simply consider the SVD of its conjugate tranpose A∗.
If A is singular with rank r < min{m,n}, the full SVD is still appropriate. What changes is
that not n; but only r of the left singular vectors uj are determined by the geometry of the
hyperellipse. To construct the unitary matrix U and V , we introduce an additional (m − r)
and (n− r) arbitrary orthonormal columns respectively.

It is well known that a nondefective square matrix can be expressed as a diagonal matrix
Λ of eigenvalues, if the range and domain are represented in a basis of eigenvectors. SVD gene
ralises this fact to any matrix A ∈ Cm×n, in that SVD allows us to say that A reduces to
diagonal matrix Σ when the range is expressed in the basis of columns of U and the domain
is expressed in the basis of columns of V . More precisely, any b ∈ Cm can be expanded in the
basis of columns {u1, . . . , um} of U and any x ∈ Cn can be expanded in the basis of columns
{v1, . . . , vn} of V . The coordinate vectors for these expansions are

b = Ub′ ⇐⇒ b′ = U∗b and x = V x′ ⇐⇒ x′ = V ∗x.

Hence,

b = Ax ⇐⇒ U∗b = U∗Ax = U∗UΣV ∗x = ΣV ∗x ⇐⇒ b′ = Σx′.

There are fundamental differences between the SVD and the eigenvalue decomposition.

(a) SVD uses two different bases (the sets of left and right singular vectors), whereas the
eigenvalue decomposition uses just one (the eigenvectors).

(b) SVD uses orthonormal bases, whereas the eigenvalue decomposition uses a basis that
generally is not orthogonal.

(c) Not all matrices (even square ones) have an eigenvalue decomposition, but all matrices
(even rectangular ones) have a SVD.

(d) In practice, eigenvalues tend to be relevant to problems involving the behaviour of iter-
ated forms of A, such as matrix powers An or matrix exponentials etA, whereas singular
vectors tend to be relevant to problems involving the behaviour of A itself, or its inverse.
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2.1.3 Matrix Properties via SVD

For the following discussion, we assume that A ∈ Cm×n and denote p = min{m,n} and r ≤ p
the number of nonzero singular values of A.

Theorem 2.1.4. The rank of A is r, the number of nonzero singular values. Moreover,

R(A) = span{u1, . . . , ur} and N (A) = span{vr+1, . . . , vn}.

Proof. Since U, V are unitary, they have full rank. Thus, rank(A) = rank(Σ) = numbers of its
nonzero entries. For any x ∈ Cn, we have Ax = UΣV ∗x = UΣy, where y ∈ Cn is arbitrary.
The R(A) is then deduced from the fact that R(Σ) = span{e1, . . . , er}. To find the nullspace
of A, expanding Az = 0 yields

Az = UΣV ∗z = 0 =⇒ ΣV ∗z = 0 since U is of full rank,

from which we deduce thatN (A) is the span of {vr+1, . . . , vn} sinceN (Σ) = span{er+1, . . . , en}.
�

Theorem 2.1.5. ‖A‖2 = σ1 and ‖A‖F =
√
σ2
1 + σ2

2 + . . .+ σ2
r .

Proof. Since ‖ · ‖2 and ‖ · ‖F are both invariant under unitary transformation, we have that

‖A‖2 = ‖UΣV ∗‖2 = ‖Σ‖2 = max
1≤j≤p

|σj| = σ1,

and

‖A‖F = ‖UΣV ∗‖F = ‖Σ‖F =
√
σ2
1 + . . .+ σ2

r .

�

Theorem 2.1.6. The nonzero singular values of A are the square roots of the nonzero eigen-
values of A∗A or AA∗. (These matrices have the same nonzero eigenvalues.)

Proof. Observe that A∗A ∈ Cn×n is similar to Σ∗Σ since

A∗A = (UΣV ∗)∗(UΣV ∗) = V ΣTU∗UΣV ∗ = V (ΣTΣ)V ∗,

and hence has the same n eigenvalues. Σ∗Σ is a diagonal matrix with p eigenvalues σ2
1, . . . , σ

2
p

and n−p additional zero eigenvalues if n > p. A similar calculation applies to the m eigenvalues
of AA∗.

�

Theorem 2.1.7. If A = A∗, then the singular values of A are the absolute values of the
eigenvalues of A.

Proof. Since A is Hermitian, it has an eigendecomposition of the form A = QΛQ∗ for some
unitary matrix Q and real diagonal matrix Λ consisting of eigenvalues λj of A. We rewrite it
as

A = QΛQ∗ = Q|Λ|sign(Λ)Q∗,

where |Λ| and sign(Λ) denote the diagonal matrices whose entries are |λj| and sign(λj) respec-
tively. Since sign(Λ)Q∗ is unitary whenever Q is unitary, the expression above is an SVD of A,
with the singular values equal to the diagonal entries of |Λ|. These can be put into nonincreas-
ing order by inserting suitable permutation matrices as factors in Q and sign(Λ)Q∗ if required.

�
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Theorem 2.1.8. For A ∈ Cm×m, | det(A)| =
m∏
i=1

σi.

Proof. Using the fact that unitary matrices have determinant ±1, we obtain

| det(A)| = | det(U)|| det(Σ)|| det(V ∗)| = | det(Σ)| =
n∏
j=1

σj.

�

2.1.4 Low-Rank Approximations

Low-rank approximation has been applied in a wide variety of areas such as dimension reduc-
tion, signal processing, classification and clustering. The basic problem is as follows: Given a
data matrix A, we want to identify the “best” way of approximating A with matrices having
rank less than ν for some ν . This constrained optimisation problem can be solved analytically
using SVD. Essentially, the idea is to consider the outer-product representation of A, given
by

A =
r∑
j=1

σjujv
∗
j , (2.1.2)

which can be deduced from the SVD of A by writing Σ as a sum of r matrices

Σj = diag(0, . . . , 0, σj, 0, . . . , 0).

There are many ways to decompose A into rank-one matrices, but (2.1.2) has a deeper prop-
erty: its vth partial sum captures as much of the energy of A as possible, in the sense of the
2-norm of the Frobenius norm.

Theorem 2.1.9. For any ν with 0 ≤ ν ≤ r, define

Aν =
ν∑
j=1

σjujv
∗
j ;

if ν = p = min{m,n}, define σν+1 = 0. Then

‖A− Aν‖2 = inf
B∈Cm×n

rank(B)≤ν

‖A−B‖2 = σν+1.

‖A− Aν‖F = inf
B∈Cm×n

rank(B)≤ν

‖A−B‖F =
√
σ2
ν+1 + . . .+ σ2

r .

Proof. Suppose there is a matrix B with rank(B) ≤ ν such that

‖A−B‖2 < ‖A− Aν‖2 = σν+1.

There is an (n − ν)-dimensional subspace W ⊂ Cn such that B(W ) = 0. For any w ∈ W we
have

‖Aw‖2 = ‖(A−B)w‖2 ≤ ‖A−B‖2‖w‖2 < σν+1‖w‖2.
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On the other hand, for any z ∈ span{v1, . . . , vν+1} := Z ⊂ Cn we have

‖Az‖22 =

∥∥∥∥∥A
(
ν+1∑
j=1

αjvj

)∥∥∥∥∥
2

2

=

∥∥∥∥∥
ν∑
j=1

αjσjuj

∥∥∥∥∥
2

2

[
Since Avj = σjuj.

]
= α2

1σ
2
1 + α2

2σ
2
2 + . . .+ α2

ν+1σ
2
ν+1

[
From Pythagorean theorem.

]
≥ σ2

ν+1[α
2
1 + α2

2 + . . .+ α2
ν+1]

= σ2
ν+1‖z‖22,

Since W,Z are subspaces of Cn,

dim(W + Z) = dim(W ) + dim(Z)− dim(W ∩ Z),

and since the sum of the dimensions of W and Z exceeds n, there must be a nonzero vector in
W ∩ Z and we arrive at a contradiction.

�

The MATLAB command for computing the reduced and full SVD is [U,S,V] = svd(A,0)
and [U,S,V] = svd(A) respectively.

2.2 Projectors

Projection is an important concept in designing algorithms for certain linear algebra problems.
Geometrically, projection is a generalisation of graphical projection. In functional analysis,
a projection P is a bounded linear operator such that P 2 = P ; in finite-dimensional vector
space, P is a square matrix in Cn×n and it is said to be idempotent. Observe that if y ∈ R(P ),
then y = Px for some x ∈ Cn and

Py = PPx = P 2x = Px = y.

What if y 6= Py? For any particular y ∈ Cn, consider the vector y to Py, Py − y. Applying
the projector to Py − y gives

P (Py − y) = P 2y − Py = Py − Py = 0.

i.e. Py − y ∈ N (P ). Geometrically, this means that P projects onto R(P ) along N (P ).

R(P )

Py

y

Py − y

x = 6

x

y

Figure 2.1: An oblique (non-orthogonal) projection.
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Example 2.2.1. Consider the matrix P = uv∗, where u, v ∈ Cn such that v∗u = 1. P is
a projector since P 2 = uv∗uv∗ = uv∗ = P . Note that N (P ) = {x ∈ Cn : v∗x = 0} and
R(P ) = span{u}. We verify that Px− x ∈ N (P ) for any x ∈ Cn.

v∗(Px− x) = v∗(uv∗x)− v∗x = v∗x(v∗u− 1) = 0.

2.2.1 Complementary Projectors

Theorem 2.2.2. Let P ∈ Cn×n be a projector and consider the matrix Q = I − P .

(a) Q is also a projector, and we called Q the complementary projector to P .

(b) PQ = P (I − P ) = 0.

(c) N (P ) = R(Q) and R(P ) = N (Q).

Proof. Expanding Q2 gives

Q2 = (I − P )2 = I2 − 2P + P 2 = I − 2P + P = I − P = Q.

For the second result, P (I − P ) = P − P 2 = 0. Suppose x ∈ N (P ), then

Px = 0 =⇒ Qx = x− Px = x ∈ R(Q) =⇒ N (P ) ⊂ R(Q).

Suppose y ∈ R(Q),

y = Qy = y − Py =⇒ Py = 0 =⇒ y ∈ N (P ) =⇒ R(Q) ⊂ N (P ).

Combining these two set inequalities show the first equation in (c). The second equation in (c)
now follows from applying the previous result to I − P :

N (Q) = N (I − P ) = R(I − (I − P )) = R(P ).

�

Theorem 2.2.2 actually shows that a projector decomposes Cn into subspaces R(P ) and
N (P ) such that Cn = R(P )⊕N (P ). Such a pair are said to be complementary subspaces.
Indeed, suppose x = Px+ z, then

z = x− Px = Q(x) ∈ R(Q) = N (P ), i.e. Cn = R(P ) +N (P ).

To see that R(P ) ∩N (P ) = {0}, note that any v ∈ R(P ) ∩N (P ) satisfies

v = v − Pv = (I − P )v = 0,

since R(P ) = N (I − P ). Conversely, for any pair of complementary subspaces S1, S2 of Cn,
there exists a projector P ∈ Cn×n such that S1 = R(P ) and S2 = N (P ). We then say that P
is a projector onto S1 along S2.
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2.2.2 Orthogonal Projectors

In general, S1 = R(P ) and S2 = N (P ) might not be orthogonal, i.e. there exists x1 = Px ∈
R(P ), x2 = (I − P )y ∈ N (P ) such that

x∗1x2 = (Px)∗(I − P )y = x∗P ∗(I − P )y 6= 0.

With this in mind, a projector P ∈ Cn×n is an orthogonal projector if P ∗(I − P ) = 0; oth-
erwise it is an oblique projector. Geometrically, orthogonal projectors P projects any given
vector x orthogonally onto R(P ) along N (P ), i.e. R(P ) ⊥ N (P ). Orthogonal projectors are
not to be confused with orthogonal matrices! Surprisingly, orthogonal projectors have a rather
simple characterisation, which is the result of the next theorem.

R(P )

Py

y

Py − y

x

y

Figure 2.2: An orthogonal projection.

Theorem 2.2.3. A projector P ∈ Cn×n is orthogonal ⇐⇒ P is Hermitian, that is, P = P ∗.

Proof. If P = P ∗, then

P ∗(I − P ) = P (I − P ) = P − P 2 = 0,

and it follows from the algebraic definition that P is orthogonal. Conversely, suppose P is an
orthogonal projector, then

P ∗(I − P ) = 0, or P ∗ = P ∗P.

Consider the minimal rank SVD of P = UrΣrV
∗
r , where r ≤ n is the rank of P , U∗rUr = Ir =

V ∗r Vr and Σr is nonsingular. Substituting the SVD of P into P ∗ = P ∗P yields

VrΣrU
∗
r = P ∗ = P ∗P = (VrΣrU

∗
r )(UrΣrV

∗
r ) = VrΣ

2
rV
∗
r ,

and left multiplying both sides by Σ−1r V ∗r gives U∗r = ΣrV
∗
r . Hence,

P = Ur(ΣrV
∗
r ) = UrU

∗
r and P ∗ = (UrU

∗
r )∗ = UrU

∗
r = P.

�
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We demonstrate how to construct a full SVD of an orthogonal projector P . Let {q1, . . . , qr}
be a basis for R(P ) and {qr+1, . . . , qn} a basis for N (P ). Define a unitary matrix Q with
columns {q1, . . . , qn}. Since

Pqj =

{
qj if j = 1, . . . , r

0 if j = r + 1, . . . , n.

we obtain

PQ =
[
q1 . . . qr 0 . . . 0

]
=⇒ Q∗PQ =

q
∗
1
...
q∗n

 [q1 . . . qr 0 . . . 0
]

=

[
Ir

0n−r

]
= Σ.

Consequently, the singular values of orthogonal projectors consists of 1’s and 0’s. Because some
singular values are zero, it is advantageous to drop the columns {qr+1, . . . , qn} of Q which leads
to

P = Q̂Q̂∗, where Q̂ =
[
q1 . . . qr

]
∈ Cn×r.

Remark 2.2.4. Orthogonal projectors doesn’t necessarily have the form Q̂Q̂∗. We will show in
Section 2.2.4 that P = A(A∗A)−1A∗ is an orthogonal projection onto R(A) for any A ∈ Cm×n.

2.2.3 Projection with an Orthonormal Basis

Any natural extension of the discussion above is that in fact any matrix Q̂ with orthonormal
columns can generate an orthogonal projector. For r ≤ n, let {q1, . . . , qr} be any set of r

orthonormal vectors in Cn and Q̂ the corresponding n× r matrix. We decompose any v ∈ Cn

into (r + 1) orthogonal components

v = w +
r∑
j=1

(q∗j v)qj = w +
r∑
j=1

(qjq
∗
j )v.

More precisely, v ∈ Cn is decomposed into components in R(Q̂) plus component in R(Q̂)⊥. It
follows that the map

v 7→
r∑
j=1

(qjq
∗
j )v,

represents an orthogonal projection onto R(Q̂), i.e. the matrix P = Q̂Q̂∗ is an orthogonal
projector onto R(Q), regardless of how {q1, . . . , qr} was obtained. Note that its complement

projector I − Q̂Q̂∗ is an orthogonal projector onto R(Q̂)⊥.
In the case of r = 1, we have the rank-one orthogonal projector that isolates the component

in a single direction. More precisely, for any given q ∈ Cn, the matrix

Pq =
qq∗

q∗q
,
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projects any vector v ∈ Cn onto span{q}. Its complement

P⊥q = I − qq∗

q∗q
,

is the rank n− 1 orthogonal projector onto Cn \ span{q}.

2.2.4 Projection with an Arbitrary Basis

One can also define an orthogonal projection onto a subspace of Cn with an arbitrary basis, not
necessarily orthogonal. This avoids the need to transform a given set of basis into orthonor-
mal basis. Assume this subspace of Cn is spanned by a set of linearly independent vectors
{a1, . . . , ar}, with r ≤ n. Define

A :=
[
a1 . . . ar

]
∈ Cn×r,

Geometrically, projecting any v ∈ Cn orthogonally onto y = Ax ∈ R(A) is equivalent to
requiring y − v ⊥ R(A) = N (A∗)⊥. This means that

a∗j(y − v) = 0 for all j = 1, . . . , r,

or
A∗(Ax− v) = 0 =⇒ A∗Ax = A∗v.

Since A is of full rank, A∗A is also of full rank and x is uniquely given by

x = (A∗A)−1A∗v =⇒ Pv = y = Ax = A(A∗A)−1A∗v =⇒ P = A(A∗A)−1A∗.

Note that this is a generalisation of the rank-one orthogonal projector. If A has orthonormal
columns, then we recover P = AA∗ as before.

2.3 QR Factorisation

We now study the second matrix factorisation in the course: QR factorisation. Assume for
now that A ∈ Cm×n,m ≥ n is of full rank, but we will see later that this is not necessary.
The idea of QR factorisation is to construct a sequence of orthonormal vectors {q1, q2, . . .} that
spans the nested succesive spaces span{a1, a2, . . .}, i.e.

span{q1, . . . , qj} = span{a1, . . . , aj} for j = 1, . . . , n.

In order for span{a1, . . . , aj} to be successive spaces, the vector aj must be linear combination
of the vectors {q1, . . . , qj}. Writing this out

a1 = r11q1 (2.3.1a)

a2 = r12q1 + r22q2 (2.3.1b)

...
...

...
... (2.3.1c)

an = r1nq1 + r2nq2 + . . .+ rnnqn. (2.3.1d)
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In matrix form,

A =

a1 a2 . . . an

 =

q1 q2 . . . qn



r11 r12 · · · rin

r22
. . .

...
. . . r(n−1)n

rnn

 = Q̂R̂,

where Q̂ ∈ Cm×n has orthonormal columns and R̂ ∈ Cn×n is upper-triangular. Such a factori-
sation is called a reduced QR factorisation of A.

One can define a full QR factorisation in a similar fashion as how we define a full SVD,
by adding m − n orthonormal columns (in an arbitrary fashion) to Q̂ so that it becomes a

unitary matrix Q ∈ Cm×m; in doing so, m − n rows of zeros needs to be added to R̂ and
it becomes an upper-triangular matrix R ∈ Cm×n. In the full QR factorisation, the columns
{qn+1, . . . , qm} are orthogonal to R(A) by construction, and they constitute an orthonormal
basis for R(A)⊥ = N (A∗) if A is of full rank n.

2.3.1 Gram-Schmidt Orthogonalisation

Equation (2.3.1) suggests the following method for computing the reduced QR factorisation.
Given a1, a2, . . ., construct the vectors q1, q2, . . . and entries rij by a process of successive or-
thogonalisation. This idea is known as the Gram-Schmidt orthogonalisation.

More precisely, at the jth step, we want to find a unit vector qj ∈ span{a1, . . . , aj} such that
qj ⊥ {q1, . . . , qj−1}. This is done by projecting the vector aj onto each component {q1, . . . , qj−1}.
We then obtain

aj = vj + (q∗1aj)q1 + . . .+ (q∗j−1aj)qj−1. (2.3.2)

By construction, vj ⊥ {q1, . . . , qj−1} and vj 6= 0, since otherwise aj is a nontrivial linear combi-
nation of {a1, . . . , aj−1}, contradicting the assumption that A is of full rank. The orthonormal
vectors are given by

qj =
1

rjj

(
aj −

j−1∑
i=1

rijqi

)
, j = 1, . . . , n,

where the coefficients rij for each i = 1, . . . , n are

rij =


q∗i aj if i 6= j,

±

∥∥∥∥∥aj −
j−1∑
i=1

rijqi

∥∥∥∥∥
2

if i = j.

The sign of rjj is not determined and if desired we may choose rjj > 0 so that R̂ has positive
diagonal entries. Gram-Schmidt iteration is numerically unstable due to rounding errors on
a computer. To emphasise the instability, we refer to this algorithm as the classical Gram-
Schmidt iteration.

Theorem 2.3.1. Every matrix A ∈ Cm×n,m ≥ n has a full QR factorisation, hence also a
reduced QR factorisation.
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Proof. The case where A has full rank follows easily from the Gram-Schmidt orthogonalisation,
so suppose A does not have full rank. At one or more steps j, it will happen that vj = 0; at this
point, simply pick qj arbitrarily to be any unit vector orthogonal to {q1, . . . , qj−1}, and then
continue the Gram-Schmidt orthogonalisation process. Previous step gives us a reduced QR
factorisation of A. One can construct a full QR factorisation by introducing arbitrary m − n
orthonormal vectors in the same style as in Gram-Schmidt process.

�

Suppose A = Q̂R̂ is a reduced QR factorisation of A, then multiplying the ith column of
Q̂ by z and the ith row of R̂ by z−1, where z ∈ C such that |z| = 1 gives us another reduced
QR factorisation of A. The next theorem asserts that this is the only way to obtain a unique
reduced QR factorisation if A is of full rank.

Theorem 2.3.2. Every matrix A ∈ Cm×n,m ≥ n of full rank has a unique reduced QR
factorisation A = Q̂R̂, with rjj > 0 for each j = 1, . . . , n.

Proof. The Gram-Schmidt orthogonalisation determines rij and qj fully, except for the sign of
rjj, but this is now fixed by the condition rjj > 0.

�

Algorithm 2.1: Classical Gram-Schmidt (unstable)

for j = 1 to n
vj = aj
for i = 1 to j − 1

rij = q∗i aj
vj = vj − rijqi

end
rjj = ‖vj‖2
qj = vj/rjj

end

Suppose we want to solve Ax = b for x, where A ∈ Cm×m is nonsingular. If A = QR is a
(full) QR factorisation, then we can write

QRx = b or Rx = Q∗b.

The linear system Rx = Q∗b can be solved easily using backward substitution since R is
upper-triangular. This suggests the following method for solving Ax = b:

1. Compute a QR factorisation A = QR.

2. Compute y = Q∗b.

3. Solve Rx = y for x ∈ Cm.



Matrix Decomposition and Least Squares Problems 35

2.3.2 Modified Gram-Schmidt Algorithm

At each jth step, the classical Gram-Schmidt iteration computes a single orthogonal projection
of rank m− (j − 1) onto the space orthogonal to {q1, . . . , qj−1}, given by

vj = Pjaj, j = 1, . . . , n.

In contrast, the modified Gram-Schmidt iteration computes the same result by a sequence of
(j−1) projections of rank (m−1). Let P⊥q = I−qq∗ be the rank (m−1) orthogonal projector
onto the space orthogonal to the nonzero vector q ∈ Cm. It can be shown that

Pj = P⊥qj−1
P⊥qj−2

. . . P⊥q1 for each j = 1, . . . , n with P1 = I.

The operations are equivalent, but we decompose the projection to obtain numerical stability.
The modified Gram-Schmidt algorithm computes vj as follows (in order):

v
(1)
j = P1aj = aj

v
(2)
j = P⊥q1v

(1)
j = (I − q1q∗1)v

(1)
j

...
...

...

vj = v
(j)
j = P⊥qj−1

v
(j−1)
j = (I − qj−1q∗j−1)v

(j−1)
j .

Algorithm 2.2: Modified Gram-Schmidt

for j = 1 to n
vj = aj
for i = 1 to j − 1

rij = q∗i vj (Step by step projection)
vj = vj − rijqi

end
rjj = ‖vj‖2
aj = vj/rjj

end

Algorithm 2.3: (Efficient) Modified Gram-Schmidt

for i = 1 to n
vi = ai

end
for i = 1 to n

rii = ‖vi‖2
qi = vi/rii
for j = i+ 1 to n

rij = q∗i vj (Compute Pqi as soon as qi is found
vj = vj − rijqi and then apply to all vi+1, . . . , vn)

end
end
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Consider three vectors

a1 =


1
ε
0
0

 , a2 =


1
0
ε
0

 , a3 =


1
0
0
ε

 ,
and make the approximation ε2 ≈ 0 for ε� 1 that accounts for rounding error. Applying the
classical Gram-Schmidt gives

v1 = a1

r11 = ‖a1‖2 =
√

1 + ε2 ≈ 1

q1 =
v1
r11

≈ (1, ε, 0, 0)T

v2 = a2

r12 = qT1 a2 = 1

v2 = v2 − r12q1 = (0,−ε, ε, 0)T

r22 = ‖v2‖2 =
√

2ε

q2 =
v2
r22

=
1√
2

(0,−1, 1, 0)T

v3 = a3

r13 = qT1 a3 = 1

v3 = v3 − r13q1 = (0,−ε, 0, ε)T

r23 = qT2 a3 = 0

v3 = v3 − r23q2 = (0,−ε, 0, ε)T

r33 = ‖v3‖2 =
√

2ε

q3 =
v3
r33

=
1√
2

(0,−1, 0, 1)T .

However, qT2 q3 = 1/2 6= 0. We see that small perturbation results in instability, in the sense
that we lose orthogonality due to round off errors. On the other hand, to apply the modified
Gram-Schmidt, it is not difficult to see that q1, q2 remains unchanged and q3 is obtained as

v3 = a3

r13 = qT1 v3 = 1

v3 = v3 − r13q1 = (0,−ε, 0, ε)T

r23 = qT2 v3 =
ε√
2

v3 = v3 − r23q2 =
(

0,−ε
2
,−ε

2
, ε
)T

r33 = ‖v3‖2 =

√
6ε

2

q3 =
v3
r33

=
1√
6

(0,−1,−1, 2)T .

We recover qT2 q3 = 0 in this case.
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2.3.3 Operation Count

To assess the cost of both the Gram-Schmidt algorithms, we count the number of floating
point operations called flops. Each addition, subtraction, multiplication, division or square
root counts as one floop. We make no distinction between real and complex arithmetic, and
no consideration of memory access or other aspects. From Algorithm 2.3, we see that:

# of addition =
n∑
i=1

(
m− 1 +

(
n∑

j=i+1

m− 1

))

= n(m− 1) +
n∑
i=1

(m− 1)(n− i)

=
1

2
n(n+ 1)(m− 1)

# of subtraction =
n∑
i=1

n∑
j=i+1

m =
n∑
i=1

m(n− i) =
1

2
mn(n− 1)

# of multiplication =
n∑
i=1

(
m+

n∑
j=i+1

2m

)

= mn+
n∑
i=1

2m(n− i)

= mn2

# of division =
n∑
i=1

m = mn

# of square root =
n∑
i=1

1 = n.

Hence, the number of flops is

1

2
n(n+ 1)(m− 1) +

1

2
mn(n− 1) +mn2 +mn+ n

= 2mn2 − 1

2
n2 +mn+

1

2
n

∼ 2mn2,

where “ ∼′′ means that

lim
m,n→∞

number of flops

2mn2
= 1.

When m and n are large, this can also be obtained by considering only the dominating opera-
tions which occurs in the innermost loop of Algorithm 2.3

rij = q∗i vj

[
m multiplications and m− 1 additions.

]
vj = vj − rijqi

[
m multiplications and m− 1 subtractions.

]
Thus, the number of flops is asymptotic to

n∑
i=1

n∑
j=i+1

(4m− 1) ∼
n∑
i=1

(i)4m ∼ 2mn2.
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2.4 Least Squares Problems

Consider a linear system of m equations having n unknowns, with m > n. In matrix for-
mulation, we want to solve for x ∈ Cn, the matrix equation Ax = b, where A ∈ Cm×n and
b ∈ Cm. In general, such a problem has no solution unless b ∈ R(A), since b ∈ Cm and R(A)
is of dimension at most n < m. We say that a rectangular system of equations with m > n is
overdetermined.

Since the residual vector r = Ax− b ∈ Cm cannot be made to be zero for certain b ∈ Cm,
minimising it seems like a reasonable thing to do and measuring the “size” of r involves choosing
a norm. For the 2-norm, the problem takes the following form:

Given A ∈ Cm×n, m ≥ n, b ∈ Cm,

find x ∈ Cn such that ‖Ax− b‖2 is minimised. (2.4.1)

This is called the general (linear) least squares problem. The 2-norm is chosen due to
certain geometric and statistical reasons, but the more important reason is it leads to simple
algorithms since the derivative of a quadratic function, which must be set to zero for minimi-
sation, is linear. Geometrically, (2.4.1) means that we want to find a vector x ∈ Cn such that
the vector Ax ∈ Cm is the closest point in R(A) to b ∈ Cm.

Example 2.4.1. For a curve fitting problem, given a set of data (y1, b1), . . . , (ym, bm), we
want to find a polynomial p(y) such that p(yj) = bj for every j = 1, . . . ,m. If the points
{x1, . . . , xm} ∈ C are distinct, it can be shown that there exists a unique polynomial inter-
polant to these data, which is a polynomial of degree at most m− 1. However, the fit is often
bad, in the sense that they tend to get worse rather than better if more data are utilised. Even
the fit is good, the interpolation process may be sensitive to perturbations of the data. One
way to avoid such complications is to choose a nonuniform set of interpolation points, but in
applications this will not always be possible.

Surprisingly, one can do better by reducing the degree of the polynomial. For some n < m,
consider a degree n− 1 polynomial of the form

p(y) = x0 + x1y + . . .+ xn−1y
n−1.

In matrix form, the problem Ax = b has the form

Ax =


1 y1 . . . yn−11

1 y2 . . . yn−12
...

... . . .
...

1 ym . . . yn−1m



x0
x1
...

xn−1

 =


b1
b2
...
bm

 = b.

Such a polynomial is a least squares fit to the data if it minimises the residual vector in the
2-norm, that is,

min
polynomials of degree n−1

(
m∑
i=1

|p(yi)− bi|2
)1/2

.

2.4.1 Existence and Uniqueness

Geometrically, a vector x ∈ Cn that minimises the residual r = Ax− b in the 2-norm satisfies
Ax = Pb, where P ∈ Cm×m is the orthogonal projector onto R(A). In other words, the residual
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r = Ax− b must be orthogonal to R(A).

Theorem 2.4.2. Let A ∈ Cm×n,m ≥ n and b ∈ Cm be given. A vector x ∈ Cn minimises the
residual norm ‖r‖2 = ‖b− Ax‖2, thereby solving the least squares problem (2.4.1), if and only
if r ⊥ R(A), that is, A∗r = 0, or equivalently,

A∗Ax = A∗b, (2.4.2)

or again equivalently,

Pb = Ax,

where P ∈ Cm×m is the orthogonal projector onto R(A). The n×n system of equations (2.4.2),
known as the normal equations, is nonsingular if and only if A has full rank. Consequently,
the solution x ∈ Cn is unique if and only if A has full rank.

Proof. The equivalence of A∗r = 0 and (2.4.2) follows from the definition of r. The equivalence
of A∗r = 0 and Pb = Ax follows from the properties of orthogonal projectors, see Subsection
2.2.4. To prove that y = Pb is the unique point in R(A) that minimises ‖b− y‖2, suppose z is
another point in R(A). Since z − y ⊥ b− y, the Pythagorean theorem gives

‖b− z‖22 = ‖b− y‖22 + ‖y − z‖22 > ‖b− y‖22.

Finally, suppose A∗A ∈ Cn×n is nonsingular. For any x ∈ Cn satisfying Ax = 0, we have

Ax = 0 =⇒ (A∗A)x = A∗0 = 0 =⇒ x = 0,

and so A has full rank. Conversely, suppose A ∈ Cm×n is nonsingular and A∗Ax = 0 for some
x ∈ Cn. Then

x∗A∗Ax = x∗0 = 0 =⇒ (Ax)∗Ax = ‖Ax‖22 = 0 =⇒ Ax = 0.

Since m ≥ n by assumption, the rank of A is min{m,n} = n and the nullity of A is n− n = 0.
Hence, the nullspace of A is trivial and Ax = 0 =⇒ x = 0, which implies that A∗A is
nonsingular.

�

If A is of full rank, it follows from Theorem 2.4.2 that the unique solution to the least
squares problem is given by

x = (A∗A)−1A∗b.

where the matrix A+ = (A∗A)−1A∗ ∈ Cn×m is called the pseudoinverse of A. The full-rank
linear least squares problem (2.4.1) can then be solved by computing one of both vectors

x = A+b, y = Pb,

where P is the orthogonal projector onto R(A).
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2.4.2 Normal Equations

The classical way to solve (2.4.1) is to solve the normal equations (2.4.2). If A ∈ Cm×n has full
rank with m ≥ n, then A∗A is a square Hermitian positive-definite matrix. Indeed, for any
nonzero x ∈ Cn we have

x∗(A∗A)x = (Ax)∗Ax = ‖Ax‖22 > 0.

The standard method of solving such a system is by Cholesky factorisation, which constructs
a factorisation A∗A = R∗R, where R ∈ Cn×n is upper-triangular. Consequently, (A∗A)x = A∗b
becomes R∗Rx = A∗b.

Algorithm 2.4: Least Squares via Normal Equations

1. Form the matrix A∗A and the vector A∗b.

2. Compute the Cholesky factorisation A∗A = R∗R.

3. Solve the lower-triangular system R∗w = A∗b for w ∈ Cn, using forward substitution.

4. Solve the upper-triangular system Rx = w for x ∈ Cn, using backward substitution.

The steps that dominate the work for this computation are the first two. Exploiting the
symmetry of the problem, the computation of A∗A and the Cholesky factorisation require only
mn2 flops and n3/3 flops respectively. Thus the total operation count is ∼ mn2 + n3/3 flops.

2.4.3 QR Factorisation

Given a reduced QR factorisation A = Q̂R̂, the orthogonal projector P ∈ Cm×m onto R(A)

can be written as P = Q̂Q̂∗. Since Pb ∈ R(A), the system Ax = Pb has an exact solution and

Q̂R̂x = Q̂Q̂∗b =⇒ R̂x = Q̂∗b.

Algorithm 2.5: Least Squares via QR Factorisation

1. Compute the reduced QR factorisation A = Q̂R̂.

2. Form the vector Q̂∗b ∈ Cn.

3. Solve the upper-triangular system R̂x = Q̂∗b for x ∈ Cn, using backward substitution.

Note that the same reduction can also be derived from the normal equations (2.4.2).

A∗Ax = A∗b =⇒ (R̂∗Q̂∗)(Q̂R̂)x = R̂∗Q̂∗b =⇒ R̂x = Q̂∗b.

The operation count for this computation is dominated by the cost of the QR factorisation,
which is ∼ 2mn2 − 2n3/3 flops if Householder reflections are used.
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2.4.4 SVD

Given a reduced SVD A = ÛΣ̂V ∗, it follows from Theorem 2.1.4 that the orthogonal projector
P ∈ Cm×m onto R(A) can be written as P = Û Û∗. The system Ax = Pb reduces to

ÛΣ̂V ∗x = Û Û∗b =⇒ Σ̂V ∗x = Û∗b.

Algorithm 2.6: Least Squares via SVD

1. Compute the reduced SVD A = ÛΣ̂V ∗.

2. Form the vector Û∗b ∈ Cn.

3. Solve the diagonal system Σ̂w = Û∗b for w ∈ Cn.

4. Set x = V w ∈ Cn.

Note that the same reduction can also be derived from the normal equations (2.4.2).

(V Σ̂Û∗)(ÛΣ̂V ∗)x = V Σ̂Û∗b =⇒ Σ̂V ∗x = Û∗b.

The operation count for this computation is dominated by the cost of the SVD. For m � n
this cost is approximately the same as for QR factorisation, but for m ≈ n the SVD is more
expensive. A typical estimate is ∼ 2mn2 + 11n3 flops.

Algorithm 2.4 may be the best if we only care about the computational speed. However,
solving the normal equations is not always numerically stable and so Algorithm 2.5 is the
“modern standard” method for least squares problem. However if A is close to rank-deficient,
it turns out that Algorithm 2.5 has less-than-ideal stability properties and Algorithm 2.6 is
chosen instead.

2.5 Problems

1. Two matrices A,B ∈ Cm×m are unitary equivalent if A = QBQ∗ for some unitary
Q ∈ Cm×m. Is it true or false that A and B are unitarily equivalent if and only if they
have the same singular values?

Solution: Observe that for a square matrix, the reduced SVD and full SVD has the
same structure. The “only if” statement is true. Suppose A = QBQ∗ for some
unitary matrix Q ∈ Cm×m and let B = UBΣBV

∗
B be the SVD of B. Then

A = QBQ∗ = (QUB)ΣB(V ∗BQ
∗),

is a SVD of A since product of unitary matrices are unitary. Consequently, the
singular values of A must be the same as B. The “if” statement is false. Consider
the following two matrices

A =

[
1 0
0 1

]
and B =

[
0 1
1 0

]
.
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Since A is diagonal with positive entries, it has a SVD of the form

A = I2I2I2 = AAA =

[
1 0
0 1

] [
1 0
0 1

] [
1 0
0 1

]
,

with singular value σA1 = σA2 = 1. Since BB∗ = I2, B is unitary and it has a SVD of
the form

B = BI2I2 =

[
0 1
1 0

] [
1 0
0 1

] [
1 0
0 1

]
,

with singular values σB1 = σB2 = 1. Suppose A and B are unitary equivalent, then

A = Q∗AQ = Q∗(QBQ∗Q) = B,

and we arrive at a contradiction.

2. Using the SVD, prove that any matrix in Cm×n is the limit of a sequence of matrices of
full rank. In other words, prove that the set of full-rank matrices is a dense subset of
Cm×n. Use the 2-norm for your proof. (The norm doesn’t matter, since all norms on a
finite-dimensional space are equivalent.)

Solution: We may assume WLOG that m ≥ n. We want to show that for any
matrix A ∈ Cm×n, there exists a sequence of full rank matrices (Ak) ∈ Cm×n such
that

‖Ak − A‖2 −→ 0 as k −→∞.

The result is trivial if A has full rank, since we may choose Ak = A for each k ≥ 1, so
suppose A is rank-deficient. Let r < min{m,n} = n be the rank of A, which is also

the number of nonzero singular values of A. Consider the reduced SVD A = ÛΣ̂V ∗,
where V ∈ Cn×n is unitary, U ∈ Cm×n has orthonormal columns and

Σ̂ =



σ1
. . .

σr
0

. . .

0


∈ Rn×n.

The fact that the 2-norm is invariant under unitary transformation suggests perturb-
ing Σ̂ in such a way that it has full rank. More precisely, consider Ak = ÛΣ̂kV

∗,
where

Σ̂k = Σ̂ +
1

k
In.

Ak has full rank by construction since it has n nonzero singular values and

‖Ak − A‖2 = ‖Û(Σ̂k − Σ̂)V ∗‖2 =
1

k
‖In‖2 =

1

k
−→ 0 as k −→∞.

Since A ∈ Cm×n was arbitrary, this shows that the set of full-rank matrices is a dense
subset of Cm×n.
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3. Consider the matrix

A =

[
−2 11
−10 5

]
.

(a) Determine, on paper, a real SVD of A in the form A = UΣV T . The SVD is not
unique, so find the one that has the minimal number of minus signs in U and V .

Solution: Since A is nonsingular, Theorem 2.1.6 says that the singular values
of A are square roots of the eigenvalues of ATA. Computing ATA gives

ATA =

[
−2 −10
11 5

] [
−2 11
−10 5

]
=

[
104 −72
−72 146

]
,

with characteristic equation

λ2 − Tr(ATA)λ+ det(ATA) = λ2 − 250λ+ 10000 = 0.

Solving this using quadratic formula gives the eigenvalues

λ =
250±

√
2502 − 4(10000)

2
= 125± 75.

Thus, λ1 = 200 =⇒ σ1 =
√
λ1 = 10

√
2 and λ2 = 50 =⇒ σ2 =

√
λ2 = 5

√
2.

Denote U = [u1|u2] ∈ R2×2 and V = [v1|v2] ∈ R2×2, where u1, u2 and v1, v2 are
column vectors of U and V respectively in the SVD of A = UΣV T . Observe
that v1, v2 are normalised eigenvectors of ATA corresponding to eigenvalues
λ1, λ2 respectively since ATA = V Σ2V T . It can be shown that

V = [v1|v2] =

[
−3/5 4/5
4/5 3/5

]
.

To find u1, u2, we use the relation Avj = σjuj

Av1 =

[
10
10

]
= 10

√
2

[
1/
√

2

1/
√

2

]
= σ1u1.

Av2 =

[
5
−5

]
= 5
√

2

[
1/
√

2

−1/
√

2

]
= σ2u2.

Hence, a real SVD of A with minimal number of minus signs in U and V is

A = UΣV T =

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

] [
10
√

2 0

0 5
√

2

] [
−3/5 4/5
4/5 3/5

]
.

(b) List the singular values, left singular vectors, and right singular vectors of A. Draw
a careful, labeled picture of the unit ball in R2 and its image under A, together with
the singular vectors, with the coordinates of their vertices marked.
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Solution: The singular values of A are σ1 = 10
√

2, σ2 = 5
√

2. The left singular
vectors and right singular vectors of A are

v1 =

[
−3/5
4/5

]
, v2 =

[
4/5
3/5

]
, u1 =

[
1/
√

2

1/
√

2

]
, u2 =

[
1/
√

2

−1/
√

2

]
.

(c) What are the 1−, 2−, ∞-, and Frobenius norms of A?

Solution: Let A = (aij)i,j=1,2. Then

‖A‖1 = max
j=1,2
{|a1j|+ |a2j|} = max{12, 16} = 16

‖A‖2 = σ1 = 10
√

2

‖A‖∞ = max
i=1,2
{|ai1|+ |ai2|} = max{13, 15} = 15

‖A‖F =
√

tr(ATA) =
√

250 = 5
√

10.

(d) Find A−1 not directly, but via the SVD.

Solution: Using SVD,

A−1 = (UΣV T )−1 = V Σ−1UT =

[
1/20 −11/100
1/10 −1/50

]
.

(e) Find the eigenvalues λ1, λ2 of A.

Solution: Solving the characteristic equation

λ2 − Tr(A)λ+ det(A) = λ2 − 3λ+ 100 = 0,

yields

λ =
3±

√
9− 4(100)

2
=

3

2
±
√

391i

2
.

(f) Verify that det(A) = λ1λ2 and | det(A)| = σ1σ2.

Solution:

λ1λ2 =

(
3

2
+

√
391i

2

)(
3

2
−
√

391i

2

)
=

9

4
+

391

4
=

400

4
= 100 = det(A).

σ1σ2 = (10
√

2)(5
√

2) = 50(2) = 100 = | det(A)|.

(g) What is the area of the ellipsoid onto which A maps the unit ball of R2?

Solution: The ellipse onto which A maps the unit ball of R2 has major radius
a = σ1 and minor radius b = σ2. Thus, its area is πab = πσ1σ2 = 100π.
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4. Let P ∈ Cm×m be a nonzero projector. Show that ‖P‖2 ≥ 1, with equality if and only if
P is an orthogonal projector.

Solution: Since any projector P ∈ Cm×m satisfies P 2 = P ,

‖Px‖2 = ‖P 2x‖2 ≤ ‖P‖22‖x‖2.

Taking the supremum over all x ∈ Cm with ‖x‖2 = 1 gives

‖P‖2 ≤ ‖P‖22 =⇒ ‖P‖2 ≥ 1 since ‖P‖2 6= 0.

Suppose P is an orthogonal projector with its SVD P = UΣV ∗, where its singular
values are 1’s and 0’s. It follows from Theorem 2.1.4 that ‖P‖2 = σ1 = 1. Conversely,
suppose P is not an orthogonal projector. By definition, this means that

R(P ) 6⊥ N (P ) = R(I − P ).

5. Let A =


1 0 −1
1 2 1
1 1 −3
0 1 1

 and b =


1
1
1
1

.

(a) Determine the reduced QR factorisation of A.

Solution: Denote by aj the jth column of A, j = 1, 2, 3. Following the Gram-
Schmidt iteration notation from Section 2.3,

r11 = ‖a1‖2 =
√

3 =⇒ q1 =
a1
r11

=
1√
3

(1, 1, 1, 0)∗.

r12 = q∗1a2 =
√

3.

v2 = a2 − r12q1 = a2 −
√

3q1 = (−1, 1, 0, 1)∗.

r22 = ‖v2‖2 =
√

3 =⇒ q2 =
v2
r22

=
1√
3

(−1, 1, 0, 1)∗.

r13 = q∗1a3 = −
√

3, r23 = q∗2a3 =
√

3.

v3 = a3 − r13q1 − r23q2 = a3 +
√

3q1 −
√

3q2 = (1, 1,−2, 0)∗.

r33 = ‖v3‖2 =
√

6 =⇒ q3 =
v3
r33

=
1√
6

(1, 1,−2, 0)∗.

Hence, A = Q̂R̂, where

Q̂ =
1√
3


1 −1 1/

√
2

1 1 1/
√

2

1 0 −
√

2
0 1 0

 , R̂ =
√

3

1 1 −1
0 1 1

0 0
√

2

 .

(b) Use the QR factors from part (a) to determine the least square solution to Ax =
b.
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Solution: We follow Algorithm 11.2., page 83. Computing Q̂∗b yields

Q̂∗b =
1√
3

 1 1 1 0
−1 1 0 1

1/
√

2 1/
√

2 −
√

2 0




1
1
1
1

 =
1√
3

3
1
0

 .
Thus, R̂x = Q̂∗b becomes

√
3

1 1 −1
0 1 1

0 0
√

2

x1x2
x3

 =
1√
3

3
1
0


1 1 −1

0 1 1

0 0
√

2

x1x2
x3

 =
1

3

3
1
0

 =

 1
1/3
0

 .
Performing back substitution gives

x3 = 0.

x2 =
1

3
− x3 =

1

3
.

x1 = 1− x2 + x3 = 1− 1

3
=

2

3
.

Hence, x = (x1, x2, x3)
∗ = (2/3, 1/3, 0)∗.

6. Let A be an m× n matrix (m ≥ n), and let A = Q̂R̂ be a reduced QR factorisation.

(a) Show that A has rank n if and only if all the diagonal entries of R̂ are nonzero.

Solution: Let aj be the jth column of the matrix A ∈ Cm×n,m ≥ n. Ob-
serve that to prove the claim above, it suffices to show that the set of vectors
{a1, . . . , an} is linearly independent in Cm if and only if all the diagonal entries
of R̂ are nonzero. Indeed, rank(A) ≤ min{m,n} = n, so rank(A) = n if and
only if A is of full rank.

Suppose the set of vectors {a1, . . . , an} is linearly independent in Cm. Recall
that for every j = 1, . . . , n, aj can be expressed as a linear combination of
{q1, . . . , qj}. More precisely,

aj = r1jq1 + r2jq2 + . . .+ rjjqj =

j∑
i=1

rijqj, j = 1, . . . , n. (2.5.1)

Suppose by contradiction that there exists an j0 ∈ {1, . . . , n} such that rj0j0 = 0,
(2.5.1) implies that aj0 ∈ span{a1, . . . , aj0−1}, which contradicts the linear in-

dependency of {a1, . . . , an}. Hence all the diagonal entries of R̂ must be nonzero.

Conversely, suppose all the diagonal entries of R̂ are nonzero. Suppose the
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following equation holds

β1a1 + . . .+ βnan = 0. (2.5.2)

Substituting (2.5.1) into (2.5.2) yields

γ1q1 + . . .+ γnqn = 0,

where

γj =
n∑
k=j

βkrjk, j = 1, . . . , n. (2.5.3)

Since {q1, . . . , qn} is an orthonormal set of vectors in Cm, it is linearly indepen-
dent and so we must have γ1 = . . . = γn = 0. We claim that this and (2.5.3)
implies β1 = . . . = βn = 0. First,

γn = βnrnn = 0 =⇒ βn = 0 since rnn 6= 0.

Next,

γn−1 = βn−1r(n−1)(n−1) +��βnr(n−1)n = βn−1r(n−1)(n−1) = 0

=⇒ βn−1 = 0 since r(n−1)(n−1) 6= 0.

Carrying the exact computation inductively from j = n − 2 to j = 1, together
witih rjj 6= 0 proves the claim. Hence, (2.5.2) has only trivial solution β1 =
. . . = βn = 0, which by definition means that the set of vectors {a1, . . . , an} is
linearly independent in Cm.

(b) Suppose R̂ has k nonzero diagonal entries for some k with 0 ≤ k < n. What does
this imply about the rank of A? Exactly k? At least k? At most k? Give a precise
answer, and prove it.

Solution: Suppose R̂ has k nonzero diagonal entries for some k with 0 ≤ k < n,
i.e. R̂ has at least one zero diagonal entry. Let aj be the jth column of A, and
Aj ∈ Cm×j be the matrix defined by Aj = [a1|a2| . . . |aj].
• First,

rank(A1) =

{
1 if r11 6= 0,

0 if r11 = 0.

• For j = 2, . . . , n, regardless of the value of rjj, either

aj /∈ span{a1, . . . , aj−1} =⇒ rank(Aj) = rank(Aj−1) + 1. (2.5.4)

or
aj ∈ span{a1, . . . , aj−1} =⇒ rank(Aj) = rank(Aj−1). (2.5.5)

This means that the rank of A cannot be at most k.

• For any j = 2, . . . , n, if rjj 6= 0, then (2.5.1) implies that (2.5.4) must hold.
However, if rjj = 0, then either (2.5.4) or (2.5.5) holds. We illustrate this
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two cases by looking at 3 × 3 matrix R̂, similar idea applies to “higher
dimensional” R̂ too.

– One example where (2.5.4) holds is the case where r11 = r22 = r33 = 0
but r12 = r13 = r23 6= 0. In this case,

a1 = 0, a2 = r12q1, a3 = r13q1 + r23q2

and it is clear that a3 /∈ span{a1, a2}.
– One example where (2.5.5) holds is the case where r11 = r22 = r33 =
r23 = 0 but r12 = r13 6= 0. In this case,

a1 = 0, a2 = r12q1, a3 = r13q1

and it is clear that a3 ∈ span{a1, a2}.
Summarising everything, we conclude that the rank of A is at least k.

7. Let A be an m × m matrix, and let aj be its jth column. Give an algebraic proof of
Hadamard’s inequality :

| detA| ≤
m∏
j=1

‖aj‖2.

Also give a geometric interpretation of this result, making use of the fact that the deter-
minant equals the volume of a parallelepiped.

Solution: The inequality is trivial if A is a singular matrix, so suppose not. Consider
the QR factorisation A = Q̂R̂. Since Q̂ ∈ Cm×m is unitary, det(Q̂) = ±1; since
R̂ ∈ Cm×m is upper triangular, det(R̂) equals the product of its diagonal entries.
Using these two facts and product property of determinant,

| det(A)| = | det(Q̂R̂)| = | det(Q̂)|| det(R̂)|
= | det(R̂)|

=
m∏
j=1

|rjj| =
m∏
j=1

‖vj‖2,

where vj = aj −
j−1∑
i=1

(q∗i aj)qi, with the convention that q0 = 0 ∈ Cm. For any j =

1, . . . ,m, since {vj, q1, . . . , qj−1} are mutually orthogonal, Pythagorean theorem
gives

‖aj‖22 =

∥∥∥∥∥vj +

j−1∑
i=1

(q∗i aj)qi

∥∥∥∥∥
2

2

= ‖vj‖22 +

j−1∑
i=1

‖(q∗i aj)qi‖22

≥ ‖vj‖22
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where we crucially use the fact that ‖ · ‖2 ≥ 0. Hence,

| det(A)| ≤
m∏
j=1

‖vj‖2 ≤
m∏
j=1

‖aj‖2.

Since | det(A)| is the volume of the parallelepiped with sides given by the vector
{a1, a2, . . . , am}, the Hadamard’s inequality asserts that this is bounded above by the
volume of a rectangular parallelepiped with sides of length ‖a1‖2, ‖a2‖2, . . . , ‖am‖2.

8. Consider the inner product space of real-valued continuous functions defined on [−1, 1],
where the inner product is defined by

f · g =

∫ 1

−1
f(x)g(x) dx.

Let M be the subspace that is spanned by the three linearly independent polynomial
p0 = 1, p1 = x, p2 = x2.

(a) Use the Gram-Schmidt process to determine an orthonormal set of polynomials
(Legendre polynomials) q0, q1, q2 that spans M .

Solution: Following Gram-Schmidt iteration notation from lectures,

q0 =
p0

(p0 · p0)1/2
=

1√
2
.

r12 = q0 · p1 =

∫ 1

−1

x√
2
dx = 0.

=⇒ v1 = p1 −��r12q0 = x.

(r22)
2 = v1 · v1 =

∫ 1

−1
x2 dx =

2

3
.

=⇒ q1 =
v1
r22

=

√
3

2
x.

r13 = q0 · p2 =

∫ 1

−1

x2√
2
dx =

√
2

3
.

r23 = q1 · p2 =

∫ 1

−1

√
3

2
x3 dx = 0.

=⇒ v2 = p2 − r13q0 −��r23q1 = x2 − 1

3
.

(r33)
2 = v2 · v2 =

∫ 1

−1

(
x2 − 1

3

)2

dx =
8

45
.

=⇒ q2 =
v2
r33

=

√
45

8

(
x2 − 1

3

)
=

√
5

8
(3x2 − 1).

Hence, q0(x) =
1√
2
, q1(x) =

√
3

2
x, q2(x) =

√
5

8
(3x2 − 1).

(b) Check that qn satisfies (1− x2)y′′ − 2xy′ + n(n+ 1)y = 0 for n = 0, 1, 2.



50 2.5. Problems

Solution: It is clear that q0 satisfies the given ODE for n = 0 since q′0 = q′′0 = 0
and n(n+ 1)|n=0 = 0. Because differentiation is a linear operation, it suffices to
show that v1, v2 (from part (a)) satisfies the given ODE for n = 1, 2 respectively.
For n=1,

(1− x2)v′′1 − 2xv′1 + 1(1 + 1)v1 = (1− x2)(0)− 2x(1) + 2(x) = 0.

For n = 2,

(1− x2)v′′2 − 2xv′2 + 2(2 + 1)v2 = (1− x2)(2)− 2x(2x) + 6

(
x2 − 1

3

)
= 2− 2x2 − 4x2 + 6x2 − 2 = 0.

9. Let A ∈ Rm×n with m < n and of full rank. Then min ‖Ax− b‖2 is called an Underde-
termined Least-Squares Problem. Show that the solution is an n −m dimensional set.
Show how to compute the unique mininum norm solution using QR decomposition and
SVD approach.

Solution: Let A ∈ Rm×n with m < n and of full rank. Since m < n, Ax = b is an
underdetermined system and ‖Ax− b‖2 attains its mininum 0 in this case, where the
solution set, S is given by

S = {xp − z ∈ Rn : z ∈ N (A)},

where xp is the particular solution to Ax = b and N (A) denotes the null space of
A. Note that S is not a vector subspace of Rn (unless b = 0 ∈ Rm). Invoking the
Rank-Nullity theorem gives

dim(N (A)) = n− rank(A) = n−m.

i.e. the solution set S is an n−m dimensional set.

Now that we know solutions to an Underdetermined Least-Squares problem must
belong to S , we seek the mininum norm solution. More precisely, we look for
x0 = xp − z0 ∈ S that solves the following minimisation problem:

min
x∈S
‖x‖2 = min

z∈N (A)
‖xp − z‖2. (2.5.6)

Since N (A) is a closed subspace of Rn, (2.5.6) has a unique solution z0 satisfying
x0 = xp − z0 ∈ N (A)⊥, where N (A)⊥ denotes the orthogonal complement of N (A).
Geometrically, z0 is precisely the orthogonal projection of xp onto N (A). We will
not prove it here, but one can show that N (A)⊥ = R(AT ), the range of AT . Since
x0 ∈ N (A)⊥ = R(AT ), there exists an v0 ∈ Rm such that ATv0 = x0. Substituting
this into Ax0 = b thus gives

AATv0 = b =⇒ v0 = (AAT )−1b =⇒ x0 = AT (AAT )−1b, (2.5.7)
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where (AAT )−1 exists since A has full rank implies ATA (and also AAT ) is nonsin-
gular.

• Suppose AT ∈ Rn×m has a reduced QR factorisation AT = Q̂R̂. Then

(AAT )−1 = (R̂T Q̂T Q̂R̂)−1 = (R̂T R̂)−1 = (R̂)−1(R̂T )−1.

Substituting this into (2.5.7) yields

x0 = AT (AAT )−1b = Q̂R̂(R̂)−1(R̂T )−1b = Q̂(R̂T )−1b.

• Suppose AT ∈ Rn×m has a reduced SVD AT = ÛΣ̂V . Then

(AAT )−1 = (V T Σ̂T ÛT ÛΣ̂V )−1 = (V T Σ̂2V )−1 = V T (Σ̂2)−1V.

where V −1 = V T since V ∈ Rm×m is unitary. Substituting this into (2.5.7)
yields

x0 = AT (AAT )−1b = ÛΣ̂V V T (Σ̂2)−1V b = ÛΣ̂(Σ̂2)−1V b = Û(Σ̂)−1V b.

Here, the assumption that A is full rank is crucial, in that it ensures the existence
of (R̂T )−1 and (Σ̂)−1. Indeed, Q1(b)(i) says that R̂ has all nonzero diagonal entries,
which implies that R̂ (and also R̂T ) is nonsingular since R̂ is upper-triangular; Theo-
rem 5.1, page 33, tells us that all singular values of A, which are the diagonal entires
of Σ̂, are nonzero, which implies that Σ̂ is nonsingular since Σ̂ is diagonal.
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Chapter 3

Conditioning and Stability

3.1 Conditioning and Condition Numbers

One can view a problem as a function f : X −→ Y from a normed vector space X of data to
a normed vector space Y of solutions. A well-conditioned problem is one with the prop-
erty that all small perturbations of x lead to only small changes in f(x); an ill-conditioned
problem is one with the property that some small perturbations of x lead to a large change
in f(x).

Definition 3.1.1. Let δx be a small perturbation of x, and δf = f(x + δx) − f(x). The
absolute condition number κ̂ = κ̂(x) of the problem f at x is defined as

κ̂ = κ̂(x) = lim
δ→0

sup
‖δx‖≤δ

‖δf‖
‖δx‖

.

• It can be interpreted as a supremum over all infinitesimal perturbations δx, thus it can
be written as

κ̂ = sup
δx

‖δf‖
‖δx‖

.

• If f : Rn −→ Rm is differentiable, then there exists an element J(x) ∈ Rm×n, called the
Jacobian, such that

f(x+ δx)− f(x) = J(x)δx+ o(‖δx‖).

In the limit ‖δx‖ −→ 0, the above simplifies to δf = J(x)δx and the absolute condition
number then becomes

κ̂(x) = ‖J(x)‖,

Definition 3.1.2. The relative condition number κ = κ(x) of the problem f at x is defined
as

κ = κ(x) = lim
δ→0

sup
‖δx‖≤δ

(
‖δf‖
‖f(x)‖

/
‖δx‖
‖x‖

)
,

or assuming δx, δf are infinitesimal,

κ = κ(x) = sup
δx

(
‖δf‖
‖f(x)‖

/
‖δx‖
‖x‖

)
.

53



54 3.1. Conditioning and Condition Numbers

• If f : Rn −→ Rm is differentiable, then it can be expressed in terms of the Jacobian:

κ = sup
‖δx‖

‖J(x)‖
‖f(x)‖/‖x‖

.

• A problem is well-conditioned if κ is small (e.g. 1, 10, 100) and ill-conditioned if κ is
large (e.g. 106, 1016).

Example 3.1.3. Consider f(x) = αx, x ∈ C. Then J(x) = f ′(x) = α and

κ̂ = ‖J(x)‖ = |α| but κ =
‖J(x)‖

‖f(x)‖/‖x‖
=

|α|
|αx|/|x|

= 1.

Thus, this problem is well-conditioned.

Example 3.1.4. Consider f(x) =
√
x, x > 0. Then J(x) = f ′(x) = 1/(2

√
x) and

κ̂ = ‖J(x)‖ =
1

2
√
x

but κ =
‖J(x)‖

‖f(x)‖/‖x‖
=

(
1

2
√
x

/√
x

x

)
=

1

2
.

Thus, this problem is well-conditioned.

Example 3.1.5. Consider f(x) = x1 − x2, x = (x1, x2)
∗ ∈ (C2, ‖ · ‖∞). Then J(x) = (1,−1)

and

κ̂ = ‖J(x)‖∞ = 2 but κ =
‖J(x)‖∞

‖f(x)‖1/‖x‖∞
=

2

|x1 − x2|/max{|x1|, |x2|}
.

The absolute condition number blows up if |x1 − x2| ≈ 0. Thus, this problem is severely ill-
conditioned when x1 ≈ x2, an issue which κ̂ would not reveal.

Condition of Matrix-Vector Multiplication

Given A ∈ Cm×n, consider f(x) = Ax, x ∈ Cn. If x has some perturbation δx, then for
arbitrary vector norm we have

κ = sup
δx

(
‖J‖

‖f(x)‖/‖x‖

)
=
‖A‖‖x‖
‖Ax‖

.

• If A is square and non-singular, then

‖x‖
‖Ax‖

=
‖A−1Ax‖
‖Ax‖

≤ ‖A−1‖ =⇒ κ ≤ ‖A‖‖A−1‖.

• For ‖ · ‖2, this bound is actually attained since ‖A‖2 = σ1 and ‖A−1‖2 = 1/σm, where
σm > 0 since A is non-singular. Indeed, choosing x to be the mth right singular vector
of A yields

‖x‖2
‖Ax‖2

=
‖vm‖2
‖Avm‖2

=
‖vm‖2

σm‖um‖2
=

1

σm
.
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Theorem 3.1.6. Let A ∈ Cm×m be non-singular and consider the equation Ax = b.

(a) Consider f(x) = Ax = b. The problem of computing b, given x, has condition number

κ(x) =
‖A‖‖x‖
‖Ax‖

=
‖A‖‖x‖
‖b‖

≤ ‖A‖‖A−1‖

with respect to perturbations of x. If ‖ · ‖ = ‖ · ‖2, then equality holds if x is a multiple of
a mth right singular vector vm of A corresponding to the minimal singular value σm.

(b) Consider f(b) = A−1b = x. The problem of computing x, given b, has condition number

κ(b) =
‖A−1‖‖b‖
‖A−1b‖

=
‖A−1‖‖b‖
‖x‖

≤ ‖A−1‖‖A‖

with respect to perturbations of b. If ‖ · ‖ = ‖ · ‖2, then equality holds if b is a multiple of a
1st left singular vector u1 of A corresponding to the maximal singular value σ1.

Condition of a System of Equations

Theorem 3.1.7. Consider the problem f(A) = A−1b = x, where A ∈ Cm×m is non-singular.
The problem of computing x, given A, has condition number

κ(A) ≤ ‖A−1‖A‖

with respect to perturbations of A.

• Consider the problem f(A) = A−1b = x, where now A has some perturbation δA instead
of b. Then

(A+ δA)(x+ δx) = b =⇒ δAx+ Aδx ≈ 0 =⇒ δx ≈ −A−1δAx

and

κ(A) = sup
δA

(
‖δx‖
‖x‖

/
‖δA‖
‖A‖

)
≤ sup

δA

(
‖A−1‖‖δA‖‖x‖

‖x‖

)(
‖A‖
‖δA‖

)
= ‖A−1‖‖A‖.

• Equality holds whenever δA is such that

‖A−1δAx‖ = ‖A−1‖‖δA‖‖x‖.

It can be shown that such perturbations δA exists for any given A ∈ Cm×m, b ∈ Cm and
any chosen norm ‖ · ‖.

The product ‖A‖‖A−1‖ appears so often that we decided to call it the condition number
of A (relative to the norm ‖ · ‖), denoted by κ(A). A is said to be well-conditioned if κ(A) is
small and ill-conditioned if κ(A) is large. In the case where A is singular, we write κ(A) =∞.

For a rectangular matrix A ∈ Cm×n of full rank, m ≥ n, the condition number is defined in
terms of the pseudoinverse, i.e.

κ(A) = ‖A‖‖A+‖ = ‖A‖‖(A∗A)−1A∗‖, A+ ∈ Cn×m.
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3.2 Floating Point Arithmetic

Computer uses binary system to represent real numbers. Some examples are

(1101.11)2 = 23 + 22 + 20 +
1

2
+

1

4
= (13.75)10.

(11 . . . 11︸ ︷︷ ︸
n

)2 = 2n−1 + 2n−2 + . . .+ 21 + 20 = (2n − 1)10.

How exactly does one goes from decimal (base 10) to binary (base 2)?

• Suppose x ∈ Z+ in decimal, we divide by 2 and denote the remainder by a0; this process
continues until we reach 0 and

x = (anan−1 . . . a1a0)2 = an · 2n + an−1 · 2n−1 + . . .+ a1 · 21 + a0 · 20.

Let x = 17, then

17

2
= 8 remainder 1 =⇒ a0 = 1.

8

2
= 4 remainder 0 =⇒ a1 = 0.

4

2
= 2 remainder 0 =⇒ a2 = 0.

2

2
= 1 remainder 0 =⇒ a3 = 0.

1

2
= 0 remainder 1 =⇒ a4 = 1.

Thus, x = (10001)2 = 17.

• Suppose x has decimal digits now. We can write x in binary as follows:

x = (0.a1a2a3 . . .)2 = a1 · 2−1 + a2 · 2−2 + a3 · 2−3 + . . . .

where

x1 = frac(2x) and a1 = Int(2x).

x2 = frac(2x1) and a2 = Int(2x1).

x3 = frac(2x2) and a3 = Int(2x2).

...
...

...

Take x = 0.75, then

2x = 1.5 =⇒ x1 = frac(2x) = 0.5 and a1 = Int(2x) = 1.

2x1 = 1.0 =⇒ x1 = frac(2x1) = 0.0 and a2 = Int(2x1) = 1.

Thus, x = (0.11)2 = 0.75.

For any nonzero decimal numbers x, express it in the following form:

x = σx̄βe, where σ = sign(x) = ±1,
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β = chosen base,

e = exponent,

x̄ = mantissa of x, and (0.1)β ≤ x̄ < 1.

Observe that (0.1)10 = 0.1 for decimal while (0.1)2 = 0.5 for binary. For example,

(12.462)10 = 1 · (0.12462) · 102.

(1101.10111)2 = 1 · (0.110110111) · 24.

There exists two types of floating-point format :

Single-precision (32 bits) : σ exponent︸ ︷︷ ︸
8 bits

mantissa︸ ︷︷ ︸
23 bits

Double-precision (64 bits) : σ exponent︸ ︷︷ ︸
11 bits

mantissa︸ ︷︷ ︸
52 bits

The exponent is stored as is if it is within the given range, otherwise the number is overflow
if e is too large or underflow if e is too small.

1. An example of an overflow operation is
√
x2 + y2 when x is large. To avoid this, we

rewrite it as

√
x2 + y2 =


|x|

{
1 +

(
y

x

)2
}1/2

if x > y,

|y|

{
1 +

(
x

y

)2
}1/2

if x < y.

2. An example of an underflow operation is
√
x+ 1 −

√
x. Observe that the quantity is

approximately 0 if x is large. To avoid this, we rationalise the function

√
x+ 1−

√
x =

1√
x+ 1 +

√
x
.

Definition 3.2.1. Suppose x has a representation of the form

x = σ · (0.a1a2 . . . anan+1 . . .) · 2e,

but its floating point representation fl(x) can only include n digits for the mantissa. There are
two ways to truncate x when stored:

(a) Chopping, which amounts to truncating remaining digits after an,

(b) Rounding, based on the digit an+1:

fl(x) =

{
σ · (0.a1a2 . . . an−1an) · 2e if an+1 = 0,

σ · (0.a1a2 . . . an−11) · 2e if an+1 = 1.

• One can view the floating point representation fl(x) as a perturbation of x, i.e. there
exists an ε = ε(x) such that

fl(x) = x(1 + ε) or
fl(x)− x

x
= ε.
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It can be shown that ε has certain range depending on the truncation method:

Chopping : − 2−n+1 ≤ ε ≤ 0. (3.2.1)

Rounding : − 2−n ≤ ε ≤ 2−n. (3.2.2)

• Suppose chopping is used. Assuming σ = 1, we have that

0 ≤ x− fl(x) = (0. 0 . . . 0︸ ︷︷ ︸
n

an+1an+2 . . .)2 · 2e

≤ (0. 0 . . . 0︸ ︷︷ ︸
n

11 . . .)2 · 2e

=

{(
1

2

)n+1

+

(
1

2

)n+2

+ . . .

}
· 2e

=

(
1

2

)n+1(
1 +

1

2
+ . . .

)
· 2e

=

(
1

2

)n+1

2 · 2e = 2e+1−n−1 = 2−n+e.

Thus,

0 ≤ x− fl(x)

x
≤ 2−n+e

(0.a1a2 . . .)2 · 2e
=

2−n

(0.a1a2 . . .)2
≤ 2−n

2−1
= 2−n+1.

• Suppose rounding is used. A similar calculation as above shows that

0 ≤ |x− fl(x)| ≤ (0. 0 . . . 0︸ ︷︷ ︸
n−1

anan+1 . . .)2 · 2e

≤
(

1

2

)n
2 · 2e = 2−n+e+1.

Thus,

0 ≤
∣∣∣∣x− fl(x)

x

∣∣∣∣ ≤ 2−n+e+1

(0.a1a2 . . .)2 · 2e
≤ 2−n+1

2−1
= 2−n.

• The worst possible error for chopping is twice as large as when rounding is used. It
can be seen from (3.2.1), (3.2.2) that x − fl(x) has the same sign as x for chopping but
possibly different sign for rounding. This means that there might be cancellation of error
if rounding is used!

Definition 3.2.2. The machine epsilon, denoted by εmachine is the difference between 1 and
the next larger floating point number. In a relative sense, the machine epsilon is as large as the
gaps between floating point number get. For a double-precision computer, εmachine = 2−52 ≈
O(10−16).

Axioms of Floating Point Arithmetic

1. For all x ∈ R, there exists a floating point fl(x) such that

|fl(x)− x|
|x|

≤ εmachine.
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Equivalently, for all x ∈ R, there exists an ε with |ε| ≤ εmachine such that fl(x) =
x(1 + ε). That is, the difference between a real number and its (closest) floating point
approximation is always smaller than εmachine in relative terms.

2. Basic floating point operations consists of ⊕,	,⊗,©÷. Denote the floating point operation
by ~. For any floating points x, y, there exists an ε with |ε| ≤ εmachine such that

x~ y = fl(x ∗ y) = (x ∗ y)(1 + ε).

That is, every operation of floating point arithmetic is exact up to a relative error of size
at most εmachine.

Common sources of error include mathematical modelling of a physical problem, uncertain-
ity in physical data, machine errors and truncation errors.

3.3 Stability

Definition 3.3.1. An algorithm f̃ for a problem f is accurate if for each x ∈ X,

‖f̃(x)− f(x)‖
‖f(x)‖

= O(εmachine).

In other words, there exists a constant C > 0 such that for all sufficiently small εmachine we
have that

‖f̃(x)− f(x)‖
‖f(x)‖

≤ Cεmachine.

• In practice, C can be large. For ill-conditioned problems, the definition of accuracy can
be too restrictive.

Definition 3.3.2.

1. An algorithm f̃ for a problem f is stable if for each x ∈ X,

‖f̃(x)− f(x̃)‖
‖f(x̃)‖

= O(εmachine)

for some x̃ with
‖x̃− x‖
‖x‖

= O(εmachine).

In words, a stable algorithm gives nearly the right answer to nearly the right question.

2. An algorithm f̃ for a problem f is backward stable if for each x ∈ X,

f̃(x) = f(x̃) for some x̃ with
‖x̃− x‖
‖x‖

= O(εmachine).

In words, a backward stable algorithm gives exactly the right answer to nearly the right
question.

Theorem 3.3.3. For problems f and algorithms f̃ defined on finite-dimensional spaces X and
Y , the properties of accuracy, stability and backward stability all hold or fail to hold indepen-
dently of the choice of norms in X and Y .
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3.4 More on Stability

Theorem 3.4.1. The four floating point operations ⊕,	,⊗,©÷ are all backward stable.

Proof. We will only prove this in the case of a subtraction. Consider the subtraction f(x1, x2) =
x1 − x2, with floating point

f̃(x1, x2) = fl(x1)	 fl(x2).

From the first axiom of floating point arithmetic, there exists ε1, ε2, ε3 with |ε1|, |ε2|, |ε3| ≤
εmachine such that

fl(x1) = x1(1 + ε1), fl(x2) = x2(1 + ε2),

fl(x1)	 fl(x2) = (fl(x1)− fl(x2))(1 + ε3).

Thus,

f̃(x1, x2) = fl(x1)	 fl(x2) = [x1(1 + ε1)− x2(1 + ε2)](1 + ε3)

= x1(1 + ε4)− x2(1 + ε5)

= x̃1 − x̃2 = f(x̃1, x̃2)

for some |ε4|, |ε5| ≤ 2εmachine +O(ε2machine). Backward stability follows directly since

|x̃1 − x1|
|x1|

= O(εmachine),
|x̃2 − x2|
|x2|

= O(εmachine).

�

Accuracy of a Backward Stable Algorithm

Theorem 3.4.2. If a backward stable algorithm is used to solve a problem f : X −→ Y with
condition number κ, then the relative error satisfies the following estimates:

‖f̃(x)− f(x)‖
‖f(x)‖

= O(κ(x)εmachine).

Proof. Since f is backward stable, f̃(x) = f(x̃) for some x̃ ∈ X satisfying

‖x̃− x‖
‖x‖

= O(εmachine.

Definition of κ(x) yields:

‖f̃(x)− f(x)‖
‖f(x)‖

≤
[
κ(x) + o(1)

]‖x̃− x‖
‖x‖

,

where o(1) denotes a quantity that converges to 0 as εmachine −→ 0. The desired inequality
follows from combining these bounds. �
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3.5 Stability of Back Substitution

Lower and upper triangular systems arise in QR factorisation, Gaussian elimination and
Cholesky factorisation. These systems are easily solved by a process of successive substitu-
ion, called forward substitution if the system is lower-triangular and back substitution if
the system is upper-triangular.

1. Given a non-singular, lower-triangular matrix L ∈ Rm×m, the solution to Lx = b is given
by

x1 =
b1
l11
,

xi =
1

lii

(
b1 −

i−1∑
j=1

lijxj

)
, i = 2, . . . ,m.

2. Given a non-singular, upper-triangular matrix U ∈ Rm×m, the solution to Ux = b is given
by

xm =
bm
umm

,

xi =
1

uii

(
bi −

m∑
j=i+1

uijxj

)
, i = 1, . . . ,m− 1.

3. The operational count for both forward and backward substitution is ∼ m2 flops, since

addition and substraction ∼ m(m− 1)

2
flops.

multiplication and division ∼ m(m+ 1)

2
flops.

Theorem 3.5.1. The backward substitution algorithm applied to Ux = b is backward stable.
The computed solution x̃ ∈ Rm satisfies (U + δU)x̃ = b, where the upper-triangular matrix
δU ∈ Rm×m satisfies

‖δU‖
‖U‖

= O(εmachine),

or for all i, j,

|δuij|
|uij|

≤ mεmachine +O(ε2machine).

• What about its accuracy? With κ(A) = ‖A−1‖‖A‖,

‖x̃− x‖
‖x‖

≤ κ(A)
‖δA‖
‖A‖

= κ(U)
‖δU‖
‖U‖

= O(κ(U)εmachine).
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3.6 Problems

1. Assume that the matrix norm ‖ · ‖ satisfies the submultiplicative property ‖AB‖ ≤

‖A‖‖B‖. Show that if ‖X‖ < 1, then I − X is invertible, (I − X)−1 =
∞∑
j=0

Xj and

‖(I −X)−1‖ ≤ 1/(1− ‖X‖).

Solution: This is a classical result about Neumann series, which is the infinite
series

∑∞
j=0X

j. Assuming (I −X) is invertible, with its inverse (I −X)−1 given by
the Neumann series, using the submultiplicative property and triangle inequality for
norms we have that

‖(I −X)−1‖ =

∥∥∥∥∥
∞∑
j=0

Xj

∥∥∥∥∥ ≤
∞∑
j=0

‖X‖j =
1

1− ‖X‖
(3.6.1)

where the second infinite series, which is a geometric series, converges since ‖X‖ < 1
by assumption. This proves the desired inequality and moreover it shows that the

Neumann series
∞∑
j=0

Xj converges absolutely in the matrix norm, and thus converges

in the matrix norm too. To conclude the proof, we need to show that I − X is in
fact invertible, with its inverse given by the Neumann series. A direct computation
shows that

(I −X)

(
n∑
j=0

Xj

)
= (I −X)(I +X + . . .+Xn) = I −Xn+1. (3.6.2)

Since the geometric series in (3.6.1) converges, ‖X‖n −→ 0 as n −→ ∞. It follows
that ‖Xn − 0‖ = ‖Xn‖ ≤ ‖X‖n −→ 0 as n −→ ∞. Taking limit of (3.6.2) as
n −→∞ yields

lim
n→∞

(I −X)

(
n∑
j=0

Xn

)
= (I −X)

(
∞∑
j=0

Xj

)
= I,

A symmetric argument also shows that

(
∞∑
j=0

Xj

)
(I −X) = I. Hence, we have that

(I −X)−1 =
∞∑
j=0

Xj, i.e. I −X is invertible.

2. Let A ∈ Rn×n be nonsingular matrix. Assume that b 6= 0, x satisfies Ax = b, and x̃
is an approximate solution to this linear system. Denote e := x − x̃ the error vector
and r := b − Ax̃ the residual vector. Show the following inequalities and explain their
importance.

1

‖A‖‖A−1‖
‖r‖
‖b‖
≤ ‖e‖
‖x‖
≤ ‖A‖‖A−1‖‖r‖

‖b‖
.
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Solution: This is a relatively straightforward bound, using the assumption that A
is non-singular so that A−1 exists, and the fact that we are working with an induced
matrix norm, i.e. for any x ∈ Rn, ‖Ax‖ ≤ ‖A‖‖x‖ and ‖A−1x‖ ≤ ‖A−1‖‖x‖. Since
x = A−1b, we have

‖x‖ = ‖A−1b‖ ≤ ‖A−1‖‖b‖. (3.6.3)

On the other hand, since b = AA−1b, we have

‖r‖ = ‖b− Ax̃‖ = ‖A(A−1b− x̃)‖ = ‖A(x− x̃)‖ = ‖Ae‖ ≤ ‖A‖‖e‖. (3.6.4)

Combining (3.6.3), (3.6.4) and rearranging yields the left inequality. Next, since
Ax = b, we have

‖b‖ = ‖Ax‖ ≤ ‖A‖‖x‖. (3.6.5)

On the other hand, since Ax− b+ b− Ax̃ = r, we have

‖e‖ = ‖A−1Ae‖ = ‖A−1(Ae− b+ b)‖ = ‖A−1r‖ ≤ ‖A−1‖‖r‖. (3.6.6)

Combining (3.6.5), (3.6.6) and rearranging yields the right inequality.

We know that κ(A) = ‖A‖‖A−1‖ is by definition the condition number of the matrix
A; moreover κ(A) ≥ ‖AA−1‖ = 1. The terms ‖e‖/‖x‖, ‖r‖/‖b‖ can be interpreted as
the relative solution error and the relative residual eror respectively. Thus, the right
inequality

‖x− x̃‖
‖x‖

=
‖e‖
‖x‖
≤ κ(A)

‖r‖
‖b‖

= κ(A)
‖(b+ r)− b‖

‖b‖
tells us that the ratio between the relative solution error and the relative residual
error is controlled by the condition number of A. In other words, suppose x1 ∈ Rn is
such that Ax1 = b1 and suppose we perturb b1 by some ε > 0. Then the correspond-
ing solution can only differ from x1 at most κ(A)ε/‖b‖ in relative terms.

This estimate also shows that if κ(A) is not large then the residual r gives a good
representation of the error e. However, if κ(A) is large then the residual r is not a
good estimate of the error e.

3. Suppose that A ∈ Rn×n is non-singular, and consider the two problems:

Ax = b and (A+ δA)x̃ = b+ δb,

where we assume that ‖A−1δA‖ ≤ ‖A−1‖‖δA‖ < 1, so that (A + δA) is nonsingular
(Why?). Show that

‖x̃− x‖
‖x‖

≤ κ(A)

1− κ(A)‖δA‖‖A‖

(
‖δA‖
‖A‖

+
‖δb‖
‖b‖

)
,

where κ(A) is the condition number of the matrix.



64 3.6. Problems

Solution: Observe that since A is non-singular, we can rewrite A+ δA as

A+ δA = A(I + A−1δA) = A
[
I − (−A−1δA)

]
.

Since ‖ − A−1δA‖ = ‖A−1δA‖ < 1, Problem 1 together with the assumption that A
is also invertible shows that A+ δA is invertible, i.e A+ δA is non-singular. Since

Ax̃− Ax = (Ax̃− b) + (b− Ax) = Ax̃− b = δb− δAx̃,

we have that

‖x̃− x‖
‖x‖

=
‖A−1(Ax̃− Ax)‖

‖x‖
=
‖A−1(δb− δAx̃)‖

‖x‖
(3.6.7a)

≤ ‖A
−1‖δb‖
‖x‖

+
‖A−1‖‖δA‖‖x̃‖

‖x‖
. (3.6.7b)

Using κ(A) = ‖A−1‖‖A‖ and ‖b‖ ≤ ‖A‖‖x‖ yield the bound

‖A−1‖‖δb‖
‖x‖

=
κ(A)‖δb‖
‖A‖‖x‖

≤ κ(A)
‖δb‖
‖b‖

. (3.6.8a)

‖A−1‖‖δA‖‖x̃‖
‖x‖

= κ(A)

(
‖δA‖
‖A‖

)(
‖x̃‖
‖x‖

)
. (3.6.8b)

Denote the following quantity

C =
‖x̃− x‖
‖x‖

, D =
‖δb‖
‖b‖

, E =
‖δA‖
‖A‖

. (3.6.9)

Substituting (3.6.8) into (3.6.7) and using triangle inequality yield

C ≤ κ(A)

(
D + E

‖x̃‖
‖x‖

)
≤ κ(A)

(
D + E

(
‖x̃− x‖+ ‖x‖

‖x‖

))
= κ(A)

[
D + E(C + 1)

]
=⇒

[
1− κ(A)E

]
C ≤ κ(A)[D + E]

=⇒ C ≤ κ(A)

1− κ(A)E)
[D + E].

The desired inequality follows from substituting (3.6.9) into the above inequality.

4. Show that for Gaussian elimination with partial pivoting (permutation by rows) applied to

a matrix A ∈ Rn×n, the growth factor ρ =
maxij |uij|
maxij |aij|

satisfies the estimate ρ ≤ 2n−1.

Solution:

5. Show that if all the principal minors of a matrix A ∈ Rn×n are nonzero, then there exists
diagonal matrix D, unit lower triangular matrix L and unit upper triangular matrix U ,
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such that A = LDU . Is this factorisation unique? What happens if A is symmetric
matrix?

Solution: Since all the principal minors of a matrix A ∈ Rn×n are nonzero, there
exists a unique LU decomposition such that L has unit diagonal entries. Note that
U , an upper-triangular matrix itself, must have non-zero diagonal entries since all
the principal minors of A including det(A) itself is non-zero. However, these diagonal
entries might not be unit; fortunately this can be achieved with left-multiplying U
by a diagonal matrix D with entries dii = uii, i = 1, . . . , n. The consequence of doing
this however is that we need to scale each rows ui of U by uii, i = 1, . . . , n, which of
course is valid since uii 6= 0 for every i = 1, . . . , n. More precisely,

U =


u11 u12 u13 . . . u1n

u22 u23 . . . u2n
u33 . . . u3n

. . .
...
unn



=


u11

u22
u33

. . .

unn




1 u12/u11 u13/u11 . . . u1n/u11

1 u23/u22 . . . u2n/u22
1 . . . u3n/u33

. . .
...
1

 = DŨ

Since such LU decomposition and the way we factored out pivots of U are both
unique, we conclude that there exists a unique LDU factorisation of A with all the
desired properties for L,D,U .

If A is symmetric, then its LDU decomposition of the required form might not exist,

and might not be unique even if it does exists. Consider A = (aij) =

0 0 0
0 0 1
0 1 0


which is symmetric and suppose we want to decompose A into the form

A =

1
a 1
b c 1

A B
C

1 d e
1 f

1


=

 AaA B
bA cB C

1 d e
1 f

1


=

 A Ad Ae
aA aAd+B aAe+Bf
bA bAd+ cB bAe+ cBf + C

 .
Comparing the first two diagonal entries a11, a22 gives A = B = 0, but then

aAe+Bf = 0 6= a23 = 1.
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We see that an LDU decomposition of the required form for this particular matrix

A does not exist. Next, consider B =

[
0 0
0 1

]
which is symmetric. Observe that for

any α, β ∈ R, B has infinite LDU decomposition as follows

B =

[
0 0
0 1

]
=

[
1 0
α 1

] [
0 0
0 1

] [
1 β
0 1

]
.

The issue seems to be that A is singular. If A is symmetric positive-definite (SPD)
however, then all principal minors of A are nonzero and A has a unique LDU decom-
position of the required form. It turns out that the LDU decomposition of a SPD
matrix has a simpler form. Indeed, since A = AT ,

LDU = A = AT = UTDTLT = UTDLT .

Uniqueness of such decomposition implies UT = L, i.e.

A = LDU = UTDU = LDLT .



Chapter 4

Systems of Equations

4.1 Gaussian Elimination

The goal is to solve Ax = b by transforming the system into an upper-triangular one by
applying simple linear transformations on the left. Consider a non-singular square matrix
A = A(1) = (aij) ∈ Rn×n, b = b(1) ∈ Rn

1. Assume a11 6= 0. Introducing the multipliers

mi1 =
a
(1)
i1

a
(1)
11

, i = 2, . . . , n.

Subtracting multiples of first row from rows 2, . . . n yields

a
(2)
ij = a

(1)
ij −mi1a

(1)
1j , i, j = 2, . . . , n.

b
(2)
i = b

(1)
i −mi1b

(1)
1 , i = 2, . . . , n.

and

A(2) =


a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(2)
22 . . . a

(2)
2n

...
...

. . .
...

0 a
(2)
n2 . . . a

(2)
nn

 , b(2) =


b
(1)
1

b
(2)
2
...

b
(2)
n

 .
2. Assuming a

(2)
22 6= 0. Introducing the multipliers

mi2 =
a
(2)
i2

a
(2)
22

, i = 3, . . . , n.

Subtracting multiples of second row of A(2) from rows 3, . . . , n yields

a
(3)
ij = a

(2)
ij −mi2a

(2)
2j , i, j = 3, . . . , n.

b
(3)
i = b

(2)
i −mi2b

(2)
2 , i = 3, . . . , n.

and

A(3) =


a
(1)
11 a

(1)
12 a

(1)
13 . . . a

(1)
1n

0 a
(2)
22 a

(2)
23 . . . a

(2)
2n

0 0 a
(3)
33 . . . a

(3)
3n

...
...

...
. . .

...

0 0 a
(3)
n3 . . . a

(3)
nn

 , b(3) =


b
(1)
1

b
(2)
2

b
(3)
3
...

b
(3)
n

 .
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3. Under the assumption that a
(i)
ii 6= 0, i = 1, . . . , k − 1, we will have A(k)x = b(k), k =

2, . . . , n, where

A(k) =



a
(1)
11 a

(1)
12 . . . . . . . . . . . . a

(1)
(1n)

a
(2)
22 a

(2)
23 . . . . . . . . . a

(2)
2n

. . . . . .
...

...
...

a
(k)
kk a

(k)
k(k+1) . . . a

(k)
kn

...
...

...
...

a
(k)
nk . . . . . . a

(k)
nn


, b(k) =



b
(1)
1

b
(2)
2
...

b
(k)
k
...

b
(k)
n


,

where

mi(k−1) =
a
(k−1)
i(k−1)

a
(k−1)
(k−1)(k−1)

, i = k, . . . , n.

a
(k)
ij = a

(k−1)
ij −mi(k−1)a

(k−1)
(k−1)j, i, j = k, . . . , n.

b
(k)
i = b

(k−1)
i −mi(k−1)b

(k−1)
k−1 , i = k, . . . , n.

Finally, A(n) = U is an upper-triangular matrix. By setting L = M = (mij), where mij
is as in above for j < i, we obtain the LU decomposition.

4. A sufficient condition for the pivots a
(k)
kk 6= 0, k = 1, . . . , n − 1 is that the matrix A be

symmetric positive-definite. In basic form without pivoting, the Gaussian Elimination
Method (GEM) can be excuted in general on

• strictly diagonally dominant (SDD) matrices,

• symmetric positive-definite (SPD) matrices.

Example 4.1.1. Consider the Hilbert matrix

A(1) =

 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

 , b =

 11/6
13/12
47/60

 .
This is a classic example of an ill-conditioned matrix. It motivates the LU decomposition.

Example 4.1.2. If one needs to solve Ax = b for different b’s, factor A = LU and store L,U

for multiple uses. Consider A = A(1) =


2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

. Then

M1 =


1
−2 1
−4 1
−3 1

 =⇒ A(2) = M1A
(1) =


2 1 1 0

1 1 1
3 5 5
4 6 8

 .
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M2 =


1

1
−3 1
−4 1

 =⇒ A(3) = M2A
(2) =


2 1 1 0

1 1 1
2 2
2 4

 .

M3 =


1

1
1
−1 1

 =⇒ A(4) = M3A
(3) =


2 1 1 0

1 1 1
2 2

2

 .
Thus, U = A(4) = M3M2M1A

(1) =⇒ A = LU = (M3M2M1)
−1U and

A =


2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 =


1
2 1
4 3 1
3 4 1 1




2 1 1 0
1 1 1

2 2
2

 = LU.

General Idea

Define mk = [0, . . . , 0,mk+1k, . . . ,mnk]
T ∈ Rn and consider the kth Gaussian transforma-

tion matrix Mk defined by

Mk = In −mke
T
k =



1
. . .

1
−mk+1k 1

...
. . .

−mnk 1


.

where ek is the kth canonical basis vector in Rn. Component-wise, we have

(Mk)ip = δip − (mke
T
k )ip = δip −mikδkp, 1 ≤ i, p ≤ n.

To obtain A(k+1) from A(k),

a
(k+1)
ij = a

(k)
ij −mika

(k)
kj = a

(k)
ij −mikδkka

(k)
kj

=
n∑
p=1

(δip −mikδkp)a
(k)
pj

=
n∑
p=1

(Mk)ipa
(k)
pj = (MkA

(k))ij.

Hence, A(k) −→ A(k+1) is given by A(k+1) = MkA
(k).

• The inverse of Mk is M−1
k = In +mke

T
k . Indeed, eTkmk = 0 since mk has nonzero entries

starting from k + 1, k = 1, . . . , n− 1. Thus,

MkM
−1
k = (In −mke

T
k )(In +mke

T
k ) = In −mke

T
kmke

T
k = In.
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• Choose L = (Mn−1 . . .M1)
−1 = M−1

1 . . .M−1
n−1. A similar reason shows that eTkmk+1 = 0

for all k = 1, . . . , n− 2. Thus,

M−1
k M−1

k+1 = (In +mke
T
k )(In +mk+1e

T
k+1) = In +mke

T
k +mk+1e

T
k+1.

=⇒
n−1∏
j=1

M−1
j = In +

n−1∑
j=1

mje
T
k =


1
m21 1
m31 m32 1

...
...

. . . . . .

mn1 mn2 . . . mnn−1 1

 .

We now can solve the system Ax = b using GEM.

1. Compute the LU factorisation of A using GEM. This requires

2(n− 1)n(n+ 1)

3
+ n(n− 1) ∼ 2

3
n3 flops.

2. Solve for y ∈ Rn the lower-triangular system Ly = b, using forward substitution. This
requires ∼ n2 flops.

3. Solve for x ∈ Rn the upper-triangular system Ux = y, using backward substitution. This
requires ∼ n2 flops.

Theorem 4.1.3. Let A ∈ Rn×n. The LU factorisation of A with lii = 1, i = 1, . . . , n exists
and is unique if and only if the ith order leading principal submatrix Ai of A, i = 1, . . . , n− 1
are non-singular.

• If a11 = 0, the LU decomposition as how we defined above does not exist.

• The ith order leading principal submatrix Ai is constructed by the first i rows and i
columns of A. Its determinant is called leading dominating minors.

• If Ai is singular, then LU factorisation (with lii = 1) may not exist, or will not be unique.
We demonstrate this with the following examples:

C =

[
0 1
1 0

]
=

[
0 1
1 0

] [
1 0
0 1

]
, D =

[
0 1
0 2

]
=

[
1 0
β 1

] [
0 1
0 2− β

]
.

Proof. We begin by proving the “if” direction. By using induction, we want to show that if
det(Ai) 6= 0, i = 1, . . . , n − 1, then the LU factorisation of Ai (as defined above) exists and is
unique. The case i = 1 is trivial since a11 6= 0. Suppose the case (i− 1) is true, there exists a
unique LU decomposition of Ai−1 such that

Ai−1 = L(i−1)U (i−1), with l
(i−1)
kk = 1, k = 1, . . . , i− 1.

We look for a factorisation of the form[
Ai−1 c
dT aii

]
= Ai = L(i)U (i) =

[
L(i−1) 0
lT 1

] [
U (i−1) u

0T uii

]
.
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where 0, l, u, c, d ∈ Ri−1. Note that l
(i)
ii 6= 0 since det(Ai) 6= 0. Comparing terms in the

factorisation yields
L(i−1)u = c, lTU (i−1) = dT , lTu+ uii = aii. (4.1.1)

Since det(Ai−1) 6= 0 by induction assumption, we also have det(L(i−1)), det(U (i−1)) 6= 0. Thus,
there exists a unique u, l, uii solving (4.1.1).

Conversely, assume there exists a unique LU factorisation A = LU , with lii = 1, i = 1, . . . , n.
There are two separate cases to consider:

1. A is non-singular. Recall that for every i = 1, . . . , n, Ai has an LU factorisation of the
form

Ai = L(i)U (i) =

[
L(i−1) 0
lT 1

] [
U (i−1) u

0T uii

]
.

Thus, det(Ai) = det(L(i)) det(U (i)) = u11u22 . . . uii, i = 1, . . . , n. In particular, det(An) =
u11 . . . unn; but since A is non-singular, uii 6= 0 for all i = 1, . . . , n. Hence, we must have
det(Ai) 6= 0 for every i = 1, . . . , n.

2. A is singular. Analysis above shows that U must have at least one zero entry on the main
diagonal. Let ukk be the first zero entry of U on the main diagonal. LU factorisation
process then breaks down at (k + 1)th step, because then lT will not be unique due to
Uk being singular (refer to (4.1.1)). In other words, if ukk = 0 for some k ≤ n− 1, then
we loose existence and uniqueness of LU factorisation at (k + 1)th step. Hence, in order
to have a unique LU factorisation of A, we must have ujj 6= 0 for every j = 1, . . . , n− 1
and unn = 0.

�

We provide a simple algorithm for the Gaussian elimination method without pivoting. This
pseudocode is not optimal, in the sense that both matrices U and M can be stored in the same
array as A.

U = A,L = I.

for k = 1 to n− 1

for j = k + 1 to n

mjk =
ujk
ukk

uj,k:n = uj,k:n −mjkuk,k:n

4.2 Pivoting

We begin by exploring the cruel fact that Gaussian elimination method without pivoting is
neither stable nor backward stable, mainly due to sensitivity of rounding errors. Fortunately,
this instability can be rectified by permutating the order of the rows of the matrix in a certain
way! This operation is called pivoting.

Motivation for Pivoting

Example 4.2.1. Consider the following 2× 2 linear system Ax = b given by[
0 1
1 1

] [
x1
x2

]
=

[
1
2

]
.
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The obvious solution is to interchange rows. Now suppose we perturb a11 by some small number
ε > 0 so that [

ε 1
1 1

] [
x1
x2

]
=

[
1
2

]
.

Performing GEM yields[
ε 1
0 1− 1/ε

] [
x1
x2

]
=

[
1

2− 1/ε

]
=⇒ x2 =

2− 1/ε

1− 1/ε
≈ 1, x1 =

1− x2
ε
≈ 0.

However, the actual solution is given by x2 =
1− 2ε

1− ε
≈ 1, x1 =

1

1− ε
≈ 1 6= 0. If we

interchange rows, we have[
1 1
ε 1

] [
x1
x2

]
=

[
1
2

]
=⇒

[
1 1
0 1− ε

] [
x1
x2

]
=

[
2

1− 2ε

]
.

The solution is given by x2 =
1− 2ε

1− ε
≈ 1, x1 = 2− x2 ≈ 1.

Example 4.2.2. Consider the following 2× 2 linear system Ax = b given by[
1 1/ε
1 1

] [
x1
x2

]
=

[
1/ε
2

]
.

Performing GEM yields[
1 1/ε
0 1− 1/ε

] [
x1
x2

]
=

[
1/ε

2− 1/ε

]
=⇒ x2 =

2− 1/ε

1− 1/ε
≈ 1, x1 =

1

ε
− 1

ε
x2 ≈ 0.

However, the actual solution is given by x1 =
1

1− ε
≈ 1 6= 0.

Main Idea

We demonstrate the main idea with a simple example. Consider A = A(1) =

1 2 3
2 4 5
7 8 9

.

Ã(1) = P1A
(1) =

1 0 0
0 1 0
0 1 0

1 2 3
2 4 5
7 8 9

 =

1 2 3
2 4 5
7 8 9

 .
A(2) = M1Ã

(1) =

 1 0 0
−2 1 0
−7 0 1

1 2 3
2 4 5
7 8 9

 =

1 2 3
0 0 −1
0 −6 −12

 .
Ã(2) = P2A

(2) =

1 0 0
0 0 1
0 1 0

1 2 3
0 0 −1
0 −6 −12

 =

1 2 3
0 −6 −12
0 0 1

 .
A(3) = M2Ã

(2) =

1 0 0
0 1 0
0 0 1

1 2 3
0 −6 −12
0 0 1

 =

1 2 3
0 −6 −12
0 0 1

 .
Thus, M2P2M1P1A

(1) = U . Define P = P1P2 and M = P2P2M1P1. M doesn’t look lower-
triangular at all, but L = M−1P happens to be lower-triangular and we have PA = M−1PU .
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4.3 Stability of Gaussian Elimination

4.4 Cholesky Factorisation
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Chapter 5

Iterative Methods For Linear Systems

5.1 Consistent Iterative Methods and Convergence

The main idea of iterative method is to generate a sequence of vectors (x(k))∞k=1 with the
property

x = lim
k→∞

x(k),

where x is the true solution to Ax = b. In practice, we impose the following stopping criteria:

‖x(n) − x‖ < ε or ‖x(n+1) − x(n)‖ < ε,

where ε > 0 is some fixed tolerance. We could also look at the residual norm and demand

‖r(k)‖ = ‖b− Ax(k)‖ < ε.

Let e(k) = x(k) − x be the error vector at the kth step of the iteration process. We have the
following relation:

x = lim
k→∞

x(k) ⇐⇒ lim
k→∞

e(k) = 0.

Definition 5.1.1. Given some initial guess x(0) ∈ Rn, consider iterative methods of the form

x(k+1) = Bx(k) + f, k ≥ 0, where B = n× n iteration matrix, (5.1.1a)

f = some n-vector obtained from b. (5.1.1b)

An iterative method of the form (5.1.1) is said to be consistent with the linear system Ax = b
if f and B are such that x = Bx+ f .

Example 5.1.2. Observe that consistency of (5.1.1) does not imply its convergence. Consider
the linear system 2Ix = b. It is clear that the iterative method defined below is consistent:

x(k+1) = −x(k) + b.

However, this method is not convergent for every choice of initial guess x(0). Indeed, choosing
x(0) gives

x(2k) = 0, x(2k+1) = b , k ≥ 0.

On the other hand, the proposed iterative method converges to the true solution if x(0) = b/2.

75
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Let e(k) = x − x(k). Subtracting the consistency equation x = Bx + f from the iterative
method (5.1.1) yields the recurrence relation for the error equation

e(k+1) = Be(k) = B2e(k−1) = . . . . . . = B(k+1)e(0) for each k ≥ 0.

In order for e(k) −→ 0 as k −→∞ for any choices of e(0), we require Bk −→ 0 as k −→∞ and
not surprisingly, this depends on the the magnitude of the largest eigenvalue of B.

Definition 5.1.3. Let A ∈ Cn×n be a square matrix. A nonzero vector x ∈ Cn is an eigen-
vector of A, and λ ∈ C is its corresponding eigenvalue if Ax = λx. The set of all eigenvalues
of A is the spectrum of A, denoted by σ(A).

Theorem 5.1.4. Given any square matrix A ∈ Cn×n,

lim
m→∞

Am = 0 ⇐⇒ ρ(A) < 1,

where ρ(A) is the spectral radius of A defined by

ρ(A) = max
λ∈σ(A)

|λ|.

Proof. The result is trivial if A = 0, so suppose not. Suppose lim
m→∞

Am = 0. Choose any

λ ∈ σ(A) with corresponding eigenvector x 6= 0. Since Amx = λmx,

lim
m→∞

λmx = lim
m→∞

Amx(
lim
m→∞

λm
)
x =

(
lim
m→∞

Am
)
x = 0.

Since x 6= 0, it follows that
lim
m→∞

λm = 0 =⇒ |λ| < 1,

and this proves the only if statement since λ ∈ σ(A) was arbitrary.

Conversely, suppose ρ(A) < 1. By continuity of norm and the fact that any norms are
equivalent in finite-dimensional vector space, it suffices to prove that

lim
m→∞

‖Am‖ = 0.

Consider the Schur decomposition of A given by A = QTQ∗ (see Theorem 6.1.11) where Q is
unitary and T = D+U is upper-triangular, with D the diagonal matrix with eigenvalues of A
on its diagonal and U the nilpotent matrix, i.e. there exists an N > 0 such that Um = 0 for
m ≥ N . Since the 2-norm is invariant under unitary transformation, for m much larger than
N we have that

‖Am‖2 = ‖(D + U)m‖2 ≤
m∑
k=0

(
m!

k!(m− k)!

)
‖D‖m−k2 ‖U‖k2

=
N−1∑
k=0

(
m(m− 1) . . . (m− k + 1)

k!

)
‖D‖m−k2 ‖U‖k2
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≤
N−1∑
k=0

(
mk

k!

)
‖D‖m2

(
‖U‖2
‖D‖2

)k
≤ mN−1‖D‖m2

(
N−1∑
k=0

(
‖U‖2
‖D‖2

)k)
= CmN−1ρ(A)m,

where C is independent of m. Let am = mN−1ρ(A)m. Since

lim
m→∞

(
am+1

am

)
= lim

m→∞

(
m+ 1

m

)N−1
ρ(A) = ρ(A) < 1,

the sequence (am) converges to 0 as m→∞ by the Ratio Test for sequences. Consequently,

0 ≤ lim
m→∞

‖Am‖ ≤ C lim
m→∞

(
mN−1ρ(A)m

)
= 0,

and the if statement follows.
�

Theorem 5.1.5. Let (5.1.1) be a consistent iterative method. Then its iterates
{
x(k)
}∞
k=0

converges to the solution of Ax = b for any choice of initial guess x(0) if and only if ρ(B) < 1.

Proof. The if statement follows from applying Theorem 5.1.4 to the error equation. To prove
the only if statement, suppose ρ(B) ≥ 1. There exists λ ∈ σ(B) such that |λ| ≥ 1 with
corresponding eigenvector x 6= 0. Choosing e(0) = x yields

e(k) = Bke(0) = λke(0) 6−→ 0 as k −→∞.

�

Remark 5.1.6. A sufficient but not necessary condition for convergence of consistent iterative
method is ‖B‖ < 1 for any consistent matrix norm, since ρ(B) ≤ ‖B‖. The rate of conver-
gence depends on how much less that 1 the spectral radius is. The smaller it is, the faster the
convergence.

5.2 Linear Iterative Methods

A common approach to devise consistent iterative methods is based on an additive splitting
of the matrix A. More precisely, writing A = P − N where P is nonsingular, we obtain the
consistent iterative method

Px(k+1) = Nx(k) + b =⇒ x(k+1) = P−1Nx(k) + P−1b = Bx(k) + f.

where B = P−1N and f = P−1b.

Example 5.2.1. Consider solving the following matrix equation

Ax =

[
7 −6
−8 9

] [
x1
x2

]
=

[
3
−4

]
= b,
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Choosing P = diag(A) and N = P − A, we propose the following method

x(k+1) =

[
0 6/7

8/9 0

]
x(k) +

[
3/7
−4/9

]
= Bx(k) + f.

Another way to deduce this is by rewriting the system of linear equations in the form
x1 =

6

7
x2 +

3

7

x2 =
8

9
x1 −

4

9
.

5.2.1 Jacobi Method

Jacobi method is applicable when A ∈ Rn×n is strictly diagonally dominant. By strictly diag-
onally dominant we mean that

|aii| >
n∑
j 6=i

|aij|.

Splitting A = D +R, where

D = diag(A) =


a11

a22
. . .

ann

 and R = A−D =


0 a12 . . . a1n
a21 0 . . . a2n
...

...
. . .

...
an1 an2 . . . 0

 .
In matrix form, we have that

Dx = −Rx+ b

x(k+1) = −D−1R︸ ︷︷ ︸
B

x(k) +D−1b︸ ︷︷ ︸
f

.

Component-wise, the Jacobi iterative method has the form

x
(k+1)
i =

1

aii

(
bi −

n∑
j 6=i

aijx
(k)
j

)
, i = 1, . . . , n. (Jacobi)

This says that x(k+1) is found using x(k) only.

5.2.2 Gauss-Siedel Method

Gauss-Siedel method is applicable when A ∈ Rn×n is strictly diagonally dominant, and it is
an improvement of the Jacobi method. More precisely, at the (k + 1)th iteration, the readily

computed values of x
(k+1)
i are used to update the solution. This suggests splittingA = D+L+U ,

where

D =


a11

a22
. . .

ann

 , L =


0
a21 0
...

...
. . .

an1 an2 . . . 0

 , U =


0 a12 . . . a1n

0 . . . a2n
. . .

...
0

 .
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In matrix form, we have that

(D + L)x(k+1) = −Ux(k) + b

x(k+1) = −(D + L)−1U︸ ︷︷ ︸
B

x(k) + (D + L)−1b︸ ︷︷ ︸
f

.

Component-wise, the Gauss-Siedel iterative method has the form

x
(k+1)
i =

1

aii

(
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

)
, i = 1, . . . , n. (Gauss-Siedel)

In the matrix form of Gauss Siedel, we claim that (D + L)−1 exists. This is true because
(D + L) is strictly diagonally dominant by rows.

Theorem 5.2.2. Strictly diagonally dominant (SDD) matrices are invertible.

Proof. Suppose by contradiction that A ∈ Rn×n is a strictly diagonally dominant matrix that
is singular. There exists a nonzero x ∈ Rn such that Ax = 0. Let J ∈ {1, . . . , n} be such that

|xJ | = max
j=1,...,n

|xj|.

Expanding the Jth component of Ax yields

0 = (Ax)J =
n∑
j=1

aJjxj =⇒ aJJ = −
n∑
j 6=J

aJj
xj
xJ

=⇒ |aJJ | ≤
n∑
j 6=J

|aJj|
∣∣∣∣xjxJ
∣∣∣∣ ≤ n∑

j 6=J

|aJj|,

contradicting the assumption that A is strictly diagonally dominant.
�

Theorem 5.2.3. If A is strictly diagonally dominant by rows, then the Jacobi and Gauss-Siedel
methods are convergent.

Proof. Choose any λ ∈ σ(B) with corresponding eigenvector x 6= 0, where B = −D−1R is the
iteration matrix of the Jacobi method. Rearranging Bx = λx yields

−D−1Rx = λx

−Rx = λDx

−
n∑
j 6=i

aijxj = λaiixi, i = 1, . . . , n.

WLOG, assume ‖x‖∞ = 1. Let i be the index such that

|xj| ≤ |xi| = 1 for all j 6= i.

It follows that

|λ||aii| ≤
n∑
j 6=i

|aij| =⇒ |λ| ≤
n∑
j 6=i

|aij|
|aii|

< 1,
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since A is SDD by rows from assumption. Since λ ∈ σ(B) was arbitrary, this gives ρ(B) < 1
and the Jacobi method is convergent.

A similar argument with the iteration matrix in the Gauss-Siedel method B = −(D+L)−1U
gives

−(D + L)−1Ux = λx =⇒ −Ux = λ(D + L)x

=⇒ λDx = −(λL+ U)x

=⇒ λaiixi = −λ
i−1∑
j=1

aijxj −
n∑

j=i+1

aijxj, i = 1, . . . , n.

WLOG, assume ‖x‖∞ = 1. Let i be the index such that

|xj| ≤ |xi| = 1 for all j 6= i.

This together with the triangle inequality yields

|λ||aii| ≤ |λ|
i−1∑
j=1

|aij|+
n∑

j=i+1

|aij|

=⇒ |λ| ≤

n∑
j=i+1

|aij|

|aii| −
i−1∑
j=1

|aij|
< 1,

since A is SDD by rows from assumption. Since λ ∈ σ(B) was arbitrary, this gives ρ(B) < 1
and the Gauss-Siedel method is convergent.

�

5.2.3 Successive Over Relaxation (SOR) Method

This is a variant of the Gauss-Siedel method that results in faster convergence by introducing
a relaxation parameter ω 6= 0. Splitting A = D+L+U as in the Gauss-Siedel method, we
can rewrite the linear system Ax = b as follows

(D + L+ U)x = b

Dx = b− Lx− Ux
x = D−1(b− Lx− Ux)

ωx = ωD−1(b− Lx− Ux)

x = ωD−1(b− Lx− Ux) + (1− ω)x.

Component-wise, the SOR method has the form

x
(k+1)
i =

ω

aii

(
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

)
+ (1− ω)x

(k)
i , i = 1, . . . , n. (SOR)
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In matrix form, we have that

x(k+1) = ωD−1(b− Lx(k+1) − Ux(k)) + (1− ω)x(k)

(D + ωL)x(k+1) =
[
(1− ω)D − ωU

]
x(k) + ωb

x(k+1) = (D + ωL)−1
[
(1− ω)D − ωU

]
x(k) + ω(D + ωL)−1b

= (D + ωL)−1
[
D − ω(D + U)

]
x(k) + ω(D + ωL)−1b

= Bωx
(k) + fω.

For ω = 1, we recover the Gauss-Siedel method. For ω ∈ (0, 1), the method is called under-
relaxation; for ω > 1, the method is called over-relaxation. Clearly there exists an optimal
parameter ω0 that produces the smallest spectral radius.

Theorem 5.2.4.

(a) If A is symmetric positive definite (SPD), then the SOR method is convergent if and only
if 0 < ω < 2.

(b) If A is SDD by rows, then the SOR method is convergent if 0 < ω ≤ 1.

(c) If A, 2D − A are SPD, then the Jacobi method is convergent.

(d) If A is SPD, then the Gauss-Siedel method is convergent.

We can extrapolate the idea of a relaxation parameter to general consistent iterative meth-
ods (5.1.1). This results in a consistent iterative method for any γ 6= 0

x(k+1) = γ(Bx(k) + f) + (1− γ)x(k),

where upon rearranging yields

x(k+1) =
[
γB + (1− γ)

]
x(k) + γf = Bγx

(k) + fγ.

From Spectral Mapping Theorem, it follows that if λ ∈ σ(B), then γλ+ (1− γ) ∈ σ(Bγ).

5.3 Iterative Optimisation Methods

In this section, we reformulate the linear system Ax = b as a quadratic minimisation problem,
in the case where A ∈ Rn×n is symmetric positive-definite (SPD).

Lemma 5.3.1. If A ∈ Rn×n is SPD, solving Ax = b is equivalent to minimising the quadratic
form

q(x) =
1

2
〈x,Ax〉 − 〈x, b〉.
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Proof. Suppose x is a minimiser of q(x), the first variation of q(x) must equal to 0. More
precisely, for any v ∈ Rn we must have

lim
ε→0

q(x+ εv)− q(x)

ε
= 0.

Since A is symmetric, expanding q(x+ εv) yields

q(x+ εv) =
1

2
〈x+ εv, A(x+ εv)〉 − 〈x+ εv, b〉

=
1

2
〈x,Ax〉+

ε

2
〈x,Av〉+

ε

2
〈v,Ax〉+

ε2

2
〈v, Av〉 − 〈x, b〉 − ε〈v, b〉

= q(x) + ε
[
〈v,Ax〉 − 〈v, b〉

]
+
ε2

2
〈v,Av〉,

which upon rearranging gives

0 = lim
ε→0

q(x+ εv)− q(x)

ε
= lim

ε→0

(
〈v, Ax〉 − 〈v, b〉+

ε

2
〈v, Av〉

)
= 〈v, Ax〉 − 〈v, b〉
= 〈v, Ax− b〉 for all v ∈ Rn.

Choosing v = Ax− b, we have that ‖Ax− b‖22 = 0 =⇒ Ax = b. Observe that its mininum is
given by

q(x) =
1

2
〈A−1b, b〉 − 〈A−1b, b〉 = −1

2
〈A−1b, b〉 < 0.

Conversely, suppose Ax = b. For any v ∈ Rn, we have

q(v) = q(x+ w)

=
1

2
〈x+ w,A(x+ w)〉 − 〈x+ w, b〉

=
1

2
〈x,Ax〉+

1

2
〈x,Aw〉+

1

2
〈w,Ax〉+

1

2
〈w,Aw〉 − 〈x, b〉 − 〈w, b〉

= q(x) +
(
〈w,Ax〉 − 〈w, b〉

)
+

1

2
〈w,Aw〉

= q(x) +
1

2
〈w,Aw〉 ≥ q(x),

where we use the assumption that A is positive-definite. Since v ∈ Rn was arbitrary, it follows
that x is a minimiser of q(x).

�

If A is SPD, then its minimiser is unique. Suppose there are two distinct minimisers
x, y ∈ Rn of q(x). They must satisfy Ax = b = Ay or A(x − y) = 0, which implies that
x − y = 0 since A is non-singular. In practice, q(x) usually represents a significant quantity
such as the energy of a system. In this case the solution to Ax = b represents a state of minimal
energy.



Iterative Methods For Linear Systems 83

5.3.1 Steepest Descent/Gradient Descent Method

To compute the mininum of E(x) = q(x), we propose an iterative method, called the steepest
descent method, defined by

x(k+1) = x(k) + αkr
(k)

r(k) = b− Ax(k)
(5.3.1a)

(5.3.1b)

where αk will be chosen in such a way that E(x(k+1)) is minimised.

Lemma 5.3.2. Given x(k), E(x(k+1)) is minimised if αk is chosen to be

αk =
〈r(k), r(k)〉
〈r(k), Ar(k)〉

=
‖r(k)‖22
‖r(k)‖2A

, k ≥ 0.

where ‖ · ‖A is the energy norm.

Proof. Since A is symmetric,

E(x(k+1)) = E(x(k) + αkr
(k))

= E(x(k)) + αk

[
〈r(k), Ax(k)〉 − 〈r(k), b〉

]
+
α2
k

2
〈r(k), Ar(k)〉

=
α2
k

2
〈r(k), Ar(k)〉 − αk〈r(k), r(k)〉+ E(x(k)).

The last expression, denoted by G(αk), is a quadratic equation in αk. where G(·) is a quadratic
equation in αk. Since A is positive-definite, 〈r(k), Ar(k)〉 > 0 and there exists a unique minimum
of G(αk). This minimum must satisfies G′(αk) = 0 and solving this gives the desired expression
for αk.

�

Lemma 5.3.3. For every k ≥ 0, we have that r(k) ⊥ r(k+1) with respect to 〈·, ·〉.

Proof. First, observe that substituting (5.3.1a) into (5.3.1b) yields

r(k+1) = b− Ax(k+1) = b− A
[
x(k) + αkr

(k)
]

= b− Ax(k) − αkAr(k)

= r(k) − αkAr(k).

This together with the expression for αk from Lemma 5.3.2 yields

〈r(k+1), r(k)〉 = 〈r(k), r(k)〉 − αk〈r(k), Ar(k)〉 = 0.

�

Remark 5.3.4. The residual vector given by r(k+1) = r(k) − αkAr(k) is chosen to update the
residual vector in the steepest descent method. It is more stable numerically compared to
(5.3.1b) due to rounding error, since b can be very close to Ax(k+1) for large enough k.
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Algorithm 5.1: Steepest Descent Method
Given an initial guess x(0) ∈ Rn, set r(0) = b − Ax(0). For any k = 0, 1, . . ., compute the
following until desired tolerance.

αk =
〈r(k), r(k)〉
〈r(k), Ar(k)〉

x(k+1) = x(k) + αkr
(k)

r(k+1) = r(k) − αkAr(k).

Theorem 5.3.5. Let A ∈ Rn×n be symmetric positive definite. The steepest descent method is
convergent for any initial condition x(0) ∈ Rn and we have the following error estimate:

‖e(k+1)‖A ≤
(
κ2(A)− 1

κ2(A) + 1

)
‖e(k)‖A,

where e(k) = x(k) − xexact and κ2(A) = ‖A‖2‖A−1‖2 = σ1/σn is the condition number of A with
respect to ‖ · ‖2.

Although the steepest descent method is convergent, it does not imply that the error is
monotonically decreasing. As such, the steepest descent method can be time consuming. It
can happen that r(k) (steepest descent direction) oscillates. Indeed, Lemma 5.3.3 tells us that
r(k+2) can almost be in the same direction as ±r(k) with same magnitude.

5.3.2 Conjugate Gradient Method

The conjugate gradient (CG) method can be seen as an improvisation of the steepest descent
method. It is defined by

x(k+1) = x(k) + αkp
(k),

where the conjugate direction p(k) is a linear combination of the steepest descent direction
r(k) = b− Ax(k) and previous change in position x(k) − x(k−1), i.e.

p(k) = r(k) + γk(x
(k) − x(k−1))

= r(k) + γkαk−1p
(k−1)

= r(k) + βk−1p
(k−1).

r(k) takes another form

r(k) = b− A
(
x(k−1) + αk−1p

(k−1)
)

= r(k−1) − αk−1Ap(k−1).

Thus, the conjugate gradient method takes the form

x(k+1) = x(k) + αkp
(k)

r(k+1) = r(k) − αkAp(k)

p(k+1) = r(k+1) + βkp
(k).

(5.3.2a)

(Residual)

(Search)
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where αk, βk, p
(0) are again chosen so that E(x(k+1)) is minimised. We recover the steepest

descent method if βk = 0.

Lemma 5.3.6. Given x(k), E(x(k+1)) is minimised if p(0) = r(0) and αk, βk are chosen to be

αk =
〈r(k), r(k)〉
〈p(k), Ap(k)〉

=
‖r(k)‖22
‖p(k)‖2A

and βk =
〈r(k+1), r(k+1)〉
〈r(k), r(k)〉

=
‖r(k+1)‖22
‖r(k)‖22

, k ≥ 0.

Proof. Since A is symmetric,

E(x(k+1)) = E(x(k) + αkp
(k))

= E(x(k)) + αk

[
〈p(k), Ax(k)〉 − 〈p(k), b〉

]
+
α2
k

2
〈p(k), Ap(k)〉

=
α2
k

2
〈p(k), Ap(k)〉 − αk〈p(k), r(k)〉+ E(x(k)).

A similar argument in Lemma 5.3.2 shows that in order to minimise E(x(k+1)), αk must satisfy
G′(αk) and solving this gives

αk =
〈p(k), r(k)〉
〈p(k), Ap(k)〉

, k ≥ 0. (5.3.3)

We now rewrite 〈p(k), r(k)〉 using (Search), (Residual) and (5.3.3) accordingly:

〈p(k+1), r(k+1)〉 = 〈r(k+1), r(k+1)〉+ βk〈p(k), r(k+1)〉
= 〈r(k+1), r(k+1)〉+ βk〈p(k), r(k) − αkAp(k)〉

= 〈r(k+1), r(k+1)〉+ βk

[
〈p(k), r(k)〉 − αk〈p(k), Ap(k)〉

]
= 〈r(k+1), r(k+1)〉.

Next, substituting αk into E(x(k+1)) yields

E(x(k+1)) = E(x(k))− 1

2

(
〈r(k), r(k)〉2

〈p(k), Ap(k)〉

)
. (5.3.4)

For k = 0, E(x(1)) < E(x(0)) if we choose p(0) = r(0), since A is positive-definite. To find βk,
we want to maximise the second term in (5.3.4), i.e. minimise 〈p(k), Ap(k)〉. We write this
expression in terms of βk using (Search) and A = AT and get

〈p(k), Ap(k)〉 = 〈r(k) + βk−1p
(k−1), A(r(k) + βk−1p

(k−1))〉
= 〈r(k), Ar(k)〉+ 2βk−1〈r(k), Ap(k−1)〉+ β2

k−1〈p(k−1), Ap(k−1)〉.

Since the last expression is a quadratic equation in βk−1, E(x(k+1)) is minimised if βk−1 satisfies
H ′(βk−1) = 0 and solving this gives

βk = −〈r
(k+1), Ap(k)〉
〈p(k), Ap(k)〉

, k ≥ 1. (5.3.5)

Observe that using (Search) gives an orthogonal relation for successive p(k) with respect to
〈·, A(·)〉:

〈p(k+1), Ap(k)〉 = 〈r(k+1), Ap(k)〉+ βk〈p(k), Ap(k)〉
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= 〈r(k+1), Ap(k)〉 −
(
〈r(k+1), Ap(k)〉

�������
〈p(k), Ap(k)〉

)
�������
〈p(k), Ap(k)〉 = 0,

which in turn gives

〈p(k), Ap(k)〉 = 〈r(k), Ap(k)〉+ βk−1〈p(k−1), Ap(k)〉 = 〈r(k), Ap(k)〉.

We also obtain an orthogonal relation for succesive r(k) with respect to 〈·, ·〉, using (Residual)
and A = AT to get

〈r(k+1), r(k)〉 = 〈r(k), r(k)〉 − αk〈Ap(k), r(k)〉
= 〈r(k), r(k)〉 − αk〈Ap(k), p(k)〉 = 0,

which in turn gives

〈r(k+1), Ap(k)〉 =

〈
r(k+1),

r(k) − r(k+1)

αk

〉
= − 1

αk
〈r(k+1), r(k+1)〉

= −
(
〈p(k), Ap(k)〉
〈r(k), r(k)〉

)
〈r(k+1), r(k+1)〉.

Finally,

βk =

(
〈p(k), Ap(k)〉
〈r(k), r(k)〉

)(
〈r(k+1), r(k+1)〉
〈p(k), Ap(k)〉

)
=
‖r(k+1)‖22
‖r(k)‖22

.

�

Lemma 5.3.7. For the conjugate gradient method, the residuals and search directions satisfy
the orthogonality:

〈r(j), r(k)〉 = 〈p(j), Ap(k)〉 = 0 for all j 6= k.

Proof. We need to show the following statement for each N ≥ 1:

〈r(j), r(k)〉 = 〈p(j), Ap(k)〉 = 0 for all 0 ≤ k < j ≤ N .

The following partial result was shown in the proof of Lemma 5.3.6:

〈r(k+1), r(k)〉 = 〈p(k+1), Ap(k)〉 = 0 for all k ≥ 0.

The base case N = 1 follows from the partial result above:

〈r(1), r(0)〉 = 〈p(1), Ap(0)〉 = 0.

Suppose
〈r(j), r(k)〉 = 〈p(j), Ap(k)〉 = 0 for all 0 ≤ k < j ≤ N .

We need to show that the same relation holds for all 0 ≤ k < j ≤ N + 1. This is true from the
partial result if j = N + 1 and k = N , so suppose j = N + 1 and k < N . Then

〈r(N+1), r(k)〉 = 〈r(N) − αNAp(N), r(k)〉
[
From (Residual).

]
= −αN〈Ap(N), r(k)〉

= −αN〈Ap(N), p(k) − βkp(k−1)〉
[
From (Search).

]



Iterative Methods For Linear Systems 87

= 0.

〈p(N+1), Ap(k)〉 = 〈r(N+1) + βNp
(N), Ap(k)〉

[
From (Search).

]
= 〈r(N+1), Ap(k)〉

=

〈
r(N+1),

r(k) − r(k+1)

αk

〉 [
From (Residual).

]
= 0,

provided αk 6= 0, but αk = 0 means r(k) = 0 and the method terminates.
�

Algorithm 2: Conjugate Gradient Method
Given an initial guess x(0) ∈ Rn, set p(0) = r(0) = b− Ax(0). For each k = 0, 1, . . .,

αk =
‖r(k)‖22

〈p(k), Ap(k)〉
x(k+1) = x(k) + αkp

(k)

r(k+1) = r(k) − αkAp(k)

βk =
‖r(k+1)‖22
‖r(k)‖22

p(k+1) = r(k+1) + βkp
(k)

Theorem 5.3.8. If A ∈ Rn×n is symmetric positive definite, then the conjguate gradient
method converges (pointwise) in at most n steps to the solution of Ax = b. Moreover, the error
e(k) = x(k) − xexact ⊥ p(j) for j = 0, 1, . . . , k − 1, k < n, and

‖e(k)‖A ≤
(

2Ck

1 + C2k

)
‖e(0)‖A, where C =

√
κ2(A)− 1√
κ2(A) + 1

.

Proof. We only prove the first part. Suppose

n−1∑
j=0

δjr
(j) = 0. (5.3.6)

From Lemma 5.3.7, it follows that

δk〈r(k), r(k)〉 = 0 for all k = 0, 1, . . . , n− 1.

Either r(k) = 0 for some k ≤ n− 1 which means the iteration process stops at the kth step, or
δk = 0 for every k = 0, 1, . . . , n−1, which means the set of residual vectors {r(0), r(1), . . . , r(n−1)}
form a basis of Rn and r(n) ≡ 0. In both cases, we see that the conjugate gradient method
converges in at most n steps.

�
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5.4 Problems

1. Let A be a square matrix and let ‖ · ‖ be a consistent matrix norm (we say that ‖ · ‖ is
compatible or consistent with a vector norm ‖ · ‖ if ‖Ax‖ ≤ ‖A‖‖x‖). Show that

lim
m→∞

‖Am‖1/m = ρ(A). (5.4.1)

Solution: Since any consistent norms are equivalent in finite-dimensional vector
space, it suffices to prove the statement in the case of ‖ · ‖2. Consider the Schur
decomposition of A ∈ Cn×n given by A = QTQ∗ (see Theorem 6.1.11) where Q
is unitary and T = D + U is upper-triangular, with D the diagonal matrix with
eigenvalues of A on its diagonal and U the nilpotent matrix, i.e. there exists an
N > 0 such that Um = 0 for m ≥ N . Suppose ρ(A) = 0, then D = 0 and T = U .
Since ‖ · ‖2 is invariant under unitary transformation, for m ≥ N we have that

‖Am‖2 = ‖(QTQ∗)m‖2 = ‖QTmQ∗‖2 = ‖QUmQ∗‖2 = ‖Q0Q∗‖2 = 0,

and the equality (5.4.2) holds.

Choose any λ ∈ σ(A), with corresponding eigenvector x 6= 0. Since Amx = λmx, we
have that

|λm|‖x‖2 = ‖λmx‖2 = ‖Amx‖2 ≤ ‖Am‖2‖x‖2.

Since x 6= 0, dividing each side by ‖x‖2 gives

|λ|m ≤ ‖Am‖2.

Taking the mth root of each side, and then the maximum over all λ ∈ σ(A) yields

max
λ∈σ(A)

|λ| = ρ(A) ≤ ‖Am‖1/m2 =⇒ ρ(A) ≤ lim
m→∞

‖Am‖1/m2 . (5.4.2)

On the other hand, for m much larger than N we have that

‖Am‖2 = ‖(D + U)m‖2 ≤
m∑
k=0

(
m!

k!(m− k)!

)
‖D‖m−k2 ‖U‖k2

=
N−1∑
k=0

(
m(m− 1) . . . (m− k + 1)

k!

)
‖D‖m−k2 ‖U‖k2

≤
N−1∑
k=0

(
mk

k!

)
‖D‖m2

(
‖U‖2
‖D‖2

)k
≤ mN−1‖D‖m2

(
N−1∑
k=0

(
‖U‖2
‖D‖2

)k)
= CmN−1ρ(A)m,
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where C > 0 is independent of m. Taking the mth root and then the limit as m→∞
yields

lim
m→∞

‖Am‖1/m2 ≤ lim
m→∞

(
C1/mm(N−1)/mρ(A)

)
= ρ(A), (5.4.3)

where we use the fact that lim
m→∞

C1/m = 1 = lim
m→∞

m1/m for any nonnegative real

number C. The result follows from combining (5.4.2) and (5.4.3).

2. Consider the 3× 3 linear system of the form Ajx = bj, where bj is always taken in such a
way that the solution of the system is the vector x = (1, 1, 1)T , and the matrices Aj are

A1 =

 3 0 4
7 4 2
−1 1 2

 , A2 =

−3 3 −6
−4 7 −8
5 7 −9

 , A3 =

4 1 1
2 −9 0
0 −8 −6

 , A4 =

 7 6 9
4 5 −4
−7 −3 8

 .
Suggest strictly diagonally dominant by rows 3 × 3 matrix A5. Implement Jacobi and
Gauss-Siedel methods on A1 to A5. Explain theoretically your numerical observations.

Solution: We have that

b1 =

 7
13
2

 , b2 =

−6
−5
3

 , b3 =

 6
−7
−14

 , b4 =

22
5
−2

 .
We suggest the following strictly diagonally dominant by rows matrix A5 ∈ R3×3

given by

A5 =

15 −7 −7
−1 8 2
3 −6 11

 , with b5 =

1
9
8

 .
Recall that for the Jacobi and Gauss-Siedel method, the corresponding iteration
matrix BJ and BGS is given by

BJ = I −D−1A, BGS = −(D + L)−1U,

where A = L+D+U with D the diagonal, L the lower off diagonal and U the upper
off diagonal. The number of iterations is N = 200, and we test the algorithm for
three different random initial guesses

x10 =

0.1214
0.1815
1.6112

 , x20 =

1.0940
1.7902
0.3737

 , x30 =

1.8443
1.3112
1.2673

 .
We choose to stop the iteration process if the Euclidean norm of the residual vector
‖b − Ax(k)‖2 is less than the chosen tolerance ε = 10−12. We explain the numerical
result using the spectral radius of the iteration matrix.
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Matrix ρ(BJ) ρ(BGS) Jacobi Gauss-Siedel
A1 1.1251 1.5833 Does not converges Does not converge
A2 0.8133 1.1111 Converge Does not converge
A3 0.4438 0.0185 Converge Converge
A4 0.6411 0.7746 Converge Converge
A5 0.5134 0.2851 Converge Converge



Chapter 6

Eigenvalue Problems

Eigenvalues and eigenvectors of square matrices appear in the analysis of linear transformation
and has a wide range of applications, such as facial recognition, image compression, spectral
clustering, dimensionality reduction and ranking algorithm. These matrices may be sparse or
dense and may have greatly varying order and structure. What is to be calculated affects the
choice of method to be used, as well as the structure of the given matrix. We first discuss
three matrix factorisations, where the eigenvalues are explicitly displayed. We then review
three classical eigenvalue algorithms: power iteration, inverse iteration and Rayleigh quotient
iteration.

6.1 Eigenvalue-Revealing Factorisation

Definition 6.1.1. Let A ∈ Cm×m be a square matrix. A nonzero vector x ∈ Cm is an
eigenvector of A, and λ ∈ C is its corresponding eigenvalue if Ax = λx. The set of all
eigenvalues of A is the spectrum of A, denoted by σ(A).

6.1.1 Geometric and Algebraic Multiplicity

The set of eigenvectors corresponding to a single eigenvalue λ, together with the zero vector,
forms a subspace of Cm known as an eigenspace, denoted by Eλ. Observe that Eλ is an
invariant subspace of A, that is AEλ ⊂ Eλ. The dimension of Eλ is known as the geometric
multiplicity of λ. Equivalently, the geometric multiplicity is the dimension of (N (A − λI)),
i.e. it is the maximum number of linearly independent eigenvectors with the same eigenvalue
λ.

The characteristic polynomial of a square matrix A ∈ Cm×m is the polynomial pA(z) of
degree m defined by

pA(z) = det(zI − A).

From the definition of an eigenvalue,

λ ∈ σ(A) ⇐⇒ Ax = λx for some x 6= 0.

⇐⇒ (λI − A)x = 0 for some x 6= 0.

⇐⇒ det(λI − A) = pA(λ) = 0.

91
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Consequently, eigenvalues of A are roots of the characteristic polynomial pA and vice versa and
we may write pA as

pA(z) =
m∏
j=1

(z − λj) = (z − λ1)(z − λ2) . . . . . . (z − λm),

where λj ∈ C are eigenvalues of A and they might be repeated. With this in mind, we define
the algebraic multiplicty of λ ∈ σ(A) as the multiplicity of λ as a root of pA(z); an eigen-
value is simple if its algebraic multiplicity is 1.

Theorem 6.1.2. A matrix A ∈ Cm×m has m eigenvalues, counted with algebraic multiplicity.
In particular, A has m distinct eigenvalues if the roots of pA are simple.

Theorem 6.1.3. Given a matrix A ∈ Cm×m, the following relation holds where eigenvalues
are counted with algebraic multiplicity:

det(A) =
m∏
j=1

λj, tr(A) =
m∑
j=1

λj.

Proof. From the product property of the determinant,

det(A) = (−1)m det(−A) = (−1)mpA(0)

= (−1)m

(
m∏
j=1

(z − λj)

)∣∣∣∣
z=0

=
m∏
j=1

λj.

The second formula follows from equating the coefficient of zm−1 in det(zI−A) and
m∏
j=1

(z−λj).

�

If X ∈ Cm×m is nonsingular, then the map A 7→ X−1AX is called a similarity transfor-
mation of A. We say that two matrices A and B are similar if there exists a nonsingular X
such that B = X−1AX.

Theorem 6.1.4. If X is nonsingular, then A and X−1AX have the same characteristic poly-
nomial, eigenvalues and algebraic and geometric multiplicities.

Proof. Checking the characteristic polynomial of X−1AX yields

pX−1AX(z) = det(zI −X−1AX)

= det(X−1(zI − A)X)

= det(X−1) det(zI − A) det(X)

= det(zI − A) = pA(z).
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Consequently, A and B = X−1AX have the same characteristic polynomial and also the
eigenvalues and algebraic multiplicities. Finally, suppose Eλ is an eigenspace for A. For any
x ∈ Eλ, we have that

Ax = λx, XBX−1x = λx, BX−1x = λX−1x,

i.e. X−1Eλ is an eigenspace for B = X−1AX (since X−1 is nonsingular), and conversely.
�

Theorem 6.1.5. The algebraic multiplicity of an eigenvalue λ ∈ σ(A) is at least as great as
its geometric multiplicity.

Proof. A proof can be found in [TBI97, p.185].
�

6.1.2 Eigenvalue Decomposition

Definition 6.1.6. An eigenvalue decomposition of a square matrix A is a factorisation
A = XΛX−1, where X is nonsingular and Λ is diagonal. Equivalently, we have AX = Xλ, or
column-wise

Axj = λjxj, j = 1, . . . ,m.

This suggests that the jth column of X is an eigenvector of A, with its eigenvalue λj the jth
diagonal entry of Λ.

Observe that the eigenvalue decomposition expresses a change of basis to “eigenvector
coordinates” and this provides a way of reducing a coupled system to a system of scalar
problems. For instance, suppose we want to solve x′ = Ax, with A ∈ Rm×m given. Suppose A
is not diagonal but there exists a nonsingular X such that A = XΛX−1. Introducing a change
of variable y = X−1x, then

y′ = X−1x′ = X−1Ax = (X−1AX)X−1x = Λy.

The system is now decoupled and it can be solved separately. The solutions are

yj(t) = eλjtyj(0), j = 1, . . . ,m,

which then gives

x(t) = XDX−1x(0), where djj = eλjt, j = 1, . . . ,m.

Example 6.1.7. Consider the matrices

A =

2 0 0
0 2 0
0 0 2

 , B =

2 1 0
0 2 1
0 0 2

 .
Both A and B have characteristic polynomial (z − 2)3, so there is a single eigenvalue λ = 2 of
algebraic multiplicity 3. In the case of A, the eigenvalue has geometric multiplicty 3, which can
be seen by choosing the standard basis of R3 as eigenvectors. In the case of B, the eigenvalue
has geometric multiplicty 1, since the only eigenvectors are scalar multiples of (1, 0, 0)T .
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Definition 6.1.8. An eigenvalue whose algebraic multiplicity exceeds its geometric multiplicity
is a defective eigenvalue. A matrix that has one or more defective eigenvalues is a defective
matrix.

Theorem 6.1.9. A ∈ Cm×m is nondefective if and only if it has an eigenvalue decomposition
A = XλX−1.

Proof. Suppose A has an eigenvalue decomposition. Since A is similar to Λ, it follows from The-
orem 6.1.4 that they share the same eigenvalues and the same multiplicities. Consequently, A is
nondefective since diagonal matrices are nondefective. Conversely, suppose A is nondefective.
Then A must have m linearly independent eigenvectors since one can show that eigenvectors
with different eigenvalues must be linearly independent, and each eigenvalue can contribute as
many linearly independent eigenvectors as its multiplicity. Defining X as the matrix whose
columns are these m linearly independent eigenvectors, we see that AX = XΛ, or A = XΛX−1.

�

6.1.3 Unitary Diagonalisation

In some special cases, the eigenvectors can be chosen to be orthogonal. In this case, we say
that the matrix A is unitary diagonalisable if there exists a unitary matrix Q and a diag-
onal matrix Λ such that A = QΛQ−1. This factorisation is both an eigenvalue decomposition
and a singular value decomposition, aside from the signs of entries of Λ. Surprisingly, unitary
diagonalisable matrices have an elegant characterisation.

Theorem 6.1.10.

(a) A hermitian matrix is unitary diagonalisable, and its eigenvalues are real.

(b) A matrix A is unitary diagonalisable if and only if it is normal, that is A∗A = AA∗.

6.1.4 Schur Factorisation

Theorem 6.1.11. Every square matrix A ∈ Cm×m has a Schur factorisation, i.e. there exists
a unitary matrix Q and an upper-triangular matrix T such that A = QTQ∗. Moreover, the
eigenvalues of A necessarily appear on the diagonal of T since A and T are similar.

Proof. The proof is similar to the existence of SVD. The case m = 1 is trivial, so suppose
m ≥ 2. Let q1 be any eigenvector of A, with corresponding eigenvalue λ. WLOG, we may
assume ‖q1‖2 = 1. Consider any extension of q1 to an orthonormal basis {q1, . . . , qm} ⊂ Cm

and construct the unitary matrix

Q1 =
[
q1 Q̂1

]
∈ Cm×m, Q̂1 =

[
q2 . . . qm

]
.

We have that

T1 := Q∗1AQ1 =

[
q∗1
Q̂∗1

]
A
[
q1 Q̂1

]
=

[
q∗1Aq1 q∗1AQ̂1

Q̂∗1Aq1 Q̂∗1AQ̂1

]
=

[
λ b∗

0 Â

]
.
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By induction hypothesis, Â has a Schur factorisation Â = Q2T2Q
∗
2. Then

Q∗1AQ1 =

[
λ b∗

0 Q2T2Q
∗
2

]
=

[
1 0∗

0 Q2

] [
λ b∗Q2

0 T2

] [
1 0
0 Q∗2

]
,

and

A = Q1

[
1 0∗

0 Q2

] [
λ b∗Q2

0 T2

] [
1 0∗

0 Q∗2

]
Q∗1 = QTQ∗.

To finish the proof, we need to show that Q is unitary, but this must be true since

Q = Q1

[
1 0∗

0 Q2

]
=
[
q1 Q̂1Q

∗
2

]
,

and {q1, . . . , qm} is orthogonal by construction.
�

Remark 6.1.12. Among all three factorisations, the Schur decomposition exists for any ma-
trix and it tends to be numerically stable since unitary transformations are involved. If A is
normal, T will be diagonal and in particular, if A is hermitian, then we can take advantage of
this symmetry to reduce the computational cost.

6.1.5 Localising Eigenvalues

Below we prove a result that locates and bounds the eigenvalues of a given matrix A. A crude
bound is the following inequality regarding the spectral radius:

ρ(A) := max
λ∈σ(A)

|λ| ≤ ‖A‖,

for any consistent matrix norm.

Theorem 6.1.13 (Gershgorin Circle Theorem). The spectrum σ(A) is contained in the union
of the following m disks Di, i = 1, . . . ,m in C, where

Di =

{
z ∈ C : |z − aii| ≤

m∑
j 6=i

|aij|

}
, i = 1, . . . ,m.

Proof. Choose any eigenvector x of A, with corresponding eigenvalue λ. WLOG, we may
assume that ‖x‖∞ = 1. Let i be the index in {1, . . . ,m} such that |xi| = 1. Then

λxi = (Ax)i =
m∑
j=1

aijxj,

and

|λ− aii| = |(λ− aii)xi| =

∣∣∣∣∣
m∑
j 6=i

aijxj

∣∣∣∣∣ ≤
m∑
j 6=i

|aijxj| ≤
m∑
j 6=i

|aij|.

�
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Example 6.1.14. Consider the matrix A =

−1 + i 0 1/4
1/4 1 1/4
1 1 3

. Applying the Gershgorin

Circle Theorem gives the following three disks in C

|λ− (−1 + i)| ≤ 0 +
1

4
=

1

4

|λ− 1| ≤ 1

4
+

1

4
=

1

2
|λ− 3| ≤ 1 + 1 = 2.

Upon sketching these disks in C, we see that
1

2
≤ |λ| ≤ 5. [Draw the solution set in C.]

6.2 Eigenvalue Algorithms

For the remaining section, we will assume that A ∈ Rm×m is symmetric unless specified other-
wise. In particular, this means that A has real eigenvalues {λ1, . . . , λm} and a complete set of
orthogonal eigenvectors {q1, . . . , qm}.

6.2.1 Shortcomings of Obvious Algorithms

The most obvious method would be to compute the roots of the characteristic polynomial
pA(z). Unfortunately, polynomial-rootfinding is a severely ill-conditioned problem even when
the underlying eigenvalue problem is well-conditioned. This is because roots of polynomial
depend continuously on the coefficient of pA(z) and thus are extremely sensitive to errors, such
as round-off error.

Actually, any polynomial rootfinding problem can be rephrased as an eigenvalue problem.
Given a monic polynomial

pm(z) = zm + am−1z
m−1 + . . .+ a1z + a0,

We prove by induction that pm(z) is equal to (−1)m times the determinant of the m×m matrix

Bm =



−z −a0
1 −z −a1

1 −z −a2
1

. . .
...

. . . −z −am−2
1 (−z − am−1)


.

The base case m = 2 is clear:

(−1)2
∣∣∣∣−z −a0

1 (−z − a1)

∣∣∣∣ = z(z + a1) + a0 = p2(z).

Suppose the statement is true for m = k − 1, then

(−1)k det(Bk) = (−1)k
[
(−z)(−1)k−1(zk−1 + ak−1z

k−2 + . . .+ a2z + a1) + (−1)k+1(−a0)
]
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= z(zk−1 + ak−1z
k−2 + . . .+ a2z + a1) + a0

= pk(z).

It follows that roots of pm(z) are equal to the eigenvalues of the companion matrix

A =



0 −a0
1 0 −a1

1 0 −a2
1

. . .
...

. . . 0 −am−2
1 −am−1


.

Theorem 6.2.1. For any m ≥ 5, there exists a polynomial p(z) of degree m with rational co-
efficients that has a real root r, with the property that r cannot be written using any expression
involving rational numbers, addition, subtraction, multiplication, division and kth roots.

This theorem says that no computer program can produce the exact roots of an arbitrary
polynomial of degree ≥ 5 in a finite number of steps even in exact arithmetic, and it is because
of this that any eigenvalue solver must be iterative.

6.2.2 Rayleigh Quotient

Given a symmetric matrix A ∈ Rm×m, the Rayleigh Quotient of a nonzero vector x ∈ Rm is
the scalar

R(x) =
xTAx

xTx
.

Choosing x to be an eigenvector of A gives R(x) = λ the corresponding eigenvalue. A natural
question arises: given a nonzero x, what scalar α behaves like an eigenvalue for x in the sense
of minimising ‖Ax−αx‖2? Since x is given, this is an m×1 least squares problem of the form:

“Find α ∈ R such that ‖xα− Ax‖2 is mimimised.”

With A = x and b = Ax, The normal equation is precisely the Rayleigh quotient

ATAα = AT b, (xTx)α = xTAx, α =
xTAx

xTx
= R(x).

It is helpful to view R(·) as a function from Rm to R. We investigate the local behavior of
R(x) when x is near the eigenvector. Computing the partial derivatives of r(x) with respect
to the coordinates xj yields

∂R(x)

∂xj
=

(
1

xTx

)
∂

∂xj
(xTAx)−

(
xTAx

(xTx)2

)
∂

∂xj
(xTx)

=
2(Ax)j
xTx

− (xTAx)2xj
(xTx)2

=
2

xTx

(
(Ax)j −R(x)xj

)
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=
2

xTx
(Ax−R(x)x)j .

Consequently, the gradient of R(x) is

∇R(x) =
2

xTx
(Ax−R(x)x)T .

We deduce the following properties of R(x) from the formula of ∇R(x):

1. R(x) is smooth except at x = 0.

2. ∇R(x) = 0 at an eigenvector x of A. Conversely if ∇R(x) = 0 with x 6= 0, then x is an
eigenvector of A with corresponding eigenvalue R(x).

3. Let qJ be an eigenvector of A. For any nonzero x ∈ Rm sufficiently close to qJ , a second
order Taylor expansion yields the asymptotic relation

R(x)−R(qJ) = O
(
‖x− qJ‖22

)
if x is close to qJ . (6.2.1)

Thus the Rayleigh quotient is a quadratically accurate estimate of an eigenvalue!

We give another proof of the asymptotic relation (6.2.1). We express x as a linear combi-
nation of the eigenvectors {q1, . . . , qm}

x =
m∑
j=1

ajqj =
m∑
j=1

〈x, qj〉qj, since A is symmetric.

Assuming x ≈ qJ and

∣∣∣∣ ajaJ
∣∣∣∣ ≤ ε for all j 6= J , it suffices to show that R(x) − R(qJ) = O(ε)2,

since from Pythagorean theorem we have that

‖x− qJ‖22 =
m∑
j 6=J

|aj|2 + |aJ − 1|2 = |aJ |2
(

m∑
j 6=J

∣∣∣∣ ajaJ
∣∣∣∣2 +

∣∣∣∣aJ − 1

aJ

∣∣∣∣2
)
≈ Cε2.

Substituting the expansion of x into the Rayleigh quotient yields

R(x) =

〈
m∑
j=1

ajqj,
m∑
j=1

λjajqj

〉
m∑
j=1

a2j

=

m∑
j=1

λja
2
j

m∑
j=1

a2j

,

which in turn gives

R(x)−R(qJ) =

m∑
j=1

λja
2
j

m∑
j=1

a2j

− λJ = =

m∑
j 6=J

a2j(λj − λJ)

aJ +
m∑
j 6=J

a2j

=

m∑
j 6=J

(
aj
aJ

)2

(λj − λJ)

1 +
m∑
j 6=J

(
aj
aJ

)2
= O(ε).
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6.2.3 Power iteration

The power iteration is used to find the largest eigenvalue and its corresponding eigenvector of
a given matrix. The algorithm is presented below, and we note that the asymptotic relation
(6.2.1) can be used as a stopping criteria.

Algorithm 6.1: Power Iteration
Assume v(0) is a vector with ‖v(0)‖2 = 1.
for k = 1, 2, 3, . . . . . .

w = Avk−1

v(k) =
w

‖w‖2
λ(k) = (v(k))TAv(k).

Theorem 6.2.2. Assume |λ1| > |λ2| ≥ . . . ≥ |λm| ≥ 0 and qT1 v
(0) 6= 0. Then the iterates of

power iteration algorithm satisfy

‖v(k) −±q1‖2 = O

(∣∣∣∣λ2λ1
∣∣∣∣k
)
, |λ(k) − λ1| = O

(∣∣∣∣λ2λ1
∣∣∣∣2k
)

as k −→∞.

The ± sign means that at each step k, one or the other choice of sign is to be taken, and then
the indicated bound holds.

Proof. Write v(0) as a linear combination of the eigenvectors

v(0) = a1q1 + a2q2 + . . .+ amqm.

By definition of the power iteration,

v(1) = C1A

(
m∑
j=1

ajqj

)
= C1

(
m∑
j=1

λjajqj

)

v(2) = C2A

(
m∑
j=1

λjajqj

)
= C2

(
m∑
j=1

λ2jajqj

)
...

...
...

v(k) = CkA

(
m∑
j=1

λk−1j ajqj

)
= Ck

(
m∑
j=1

λkjajqj

)
,

where Ck are the normalisation constant. Factoring out λk1 gives

v(k) = Ckλ
k
1

(
a1q1 +

m∑
j=2

(
λj
λ1

)k
ajqj

)
=

λk1

(
a1q1 +

m∑
j=2

(
λj
λ1

)k
ajqj

)

|λ1|k
∥∥∥∥∥a1q1 +

m∑
j=2

(
λj
λ1

)k
ajqj

∥∥∥∥∥
2

.



100 6.2. Eigenvalue Algorithms

Provided a1 = qT1 v
(0) 6= 0, we see that

v(k) −→ λk1a1q1
|λ1|k|a1|‖q1‖2

= ±q1 as k −→∞,

depending on the sign of λ1 and initial guess v(0) and the first equation follows. The second
equation follows from the asymptotic relation (6.2.1) of the Rayleigh quotient.

�

If λ1 > 0, then the signs of q1 is controlled by the initial guess v(0) and so are all + or all
−. If λ1 < 0, then the signs of q1 alternate and ‖v(k)‖22 −→ ‖q1‖22 as k −→ ∞. One can show
that the iterates of power iteration algorithm satisfy

‖v(k+1) −±q1‖2
‖v(k) −±q1‖2

= O
(∣∣∣∣λ2λ1

∣∣∣∣) as k −→∞.

Consequently, the rate of convergence for the power iteration is linear. Except for special ma-
trices, the power iteration is very slow!

6.2.4 Inverse Iteration

There is a potential problem with the power iteration: what if λ2/λ1 ≈ 1 which will result in
very slow convergence? Building from the power iteration, one approach would be to transform
A such that the new matrix, say B, has its largest eigenvalue λB1 much larger than its remaining
eigenvalues. The Spectral Mapping Theorem tells us just how to find such B and as it
turns out, the same exact idea applies to finding any eigenvalues of A!

Consider any λ ∈ σ(A) with corresponding eigenvector x. For any µ ∈ R, (A− µI)−1 also
has the same eigenvector x, but with a different eigenvalue:

Ax = λx, (A− µI)x = (λ− µ)x, (A− µI)−1x = (λ− µ)−1x.

The following relation is also true:

λ ∈ σ(A) ⇐⇒ (λ− µ)−1 ∈ σ((A− µI)−1).

The upshot is if we choose µ sufficiently close to λJ , then (λJ − µ)−1 may be much larger than
(λj − µ)−1 for all j 6= J . Consequently, applying the power iteration to the matrix (A− µI)−1

gives a rapid convergence to qJ and this is precisely the idea of inverse iteration.

Algorithm 6.2: Inverse Iteration
Given µ ∈ R and v(0) some initial guess such that ‖v(0)‖2 = 1.
for k = 1, 2, 3, . . . . . .

Solve for w in the equation (A− µI)w = v(k−1)

v(k) =
w

‖w‖2
λ(k) = (v(k))TAv(k).
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Note that the first step of the algorithm involves solving a linear system at each iteration
step and this raises an immediate question: what if A−µI is so ill-conditioned that an accurate
solution of the linear system is not possible? This however is not a problem at all and we shall
not pursue this issue any further; interested reader may refer to Exercise 27.5 in [TBI97, p.210].
The following theorem is essentially a corollary of Theorem 6.2.2.

Theorem 6.2.3. Suppose λJ is the closest eigenvalue to µ and λm is the second closest, that
is,

|µ− λJ | < |µ− λm| ≤ |µ− λj| for each j 6= J.

Suppose qTJ v
(0) 6= 0. Then the iterates of inverse iteration algorithm satisfy

‖v(k) −±qJ‖2 = O

(∣∣∣∣ µ− λJµ− λm

∣∣∣∣k
)
, |λ(k) − λJ | = O

(∣∣∣∣ µ− λJµ− λm

∣∣∣∣2k
)

as k −→∞.

The ± sign means that at each step k, one or the other choice of sign is to be taken, and the
inidicated bound holds.

In practice, the inverse iteration is used when a good approximation for the desired eigen-
value is known. Otherwise, the inverse iteration converges to the eigenvector of the matrix A
corresponding to the closest eigenvalue to µ. As opposed to the power iteration, we can control
the rate of linear convergence since this depends on µ.

6.2.5 Rayleigh Quotient Iteration

Even with a good choice of µ, the inverse iteration converges at best linearly. Extending the
idea of inverse iteration, this rate of convergence can be improved as follows: at each new iter-
ation step, µ is replaced with the Rayleigh quotient of the previous eigenvector approximation.
This leads to the Rayleigh Quotient Iteration:

Algorithm 6.3: Rayleight Quotient Iteration
v(0) = some initial vector with ‖v(0)‖2 = 1
λ(0) = (v(0))TAv(0).
for k = 1, 2, 3, . . . . . .

Solve for w in the equation (A− λ(k)I)w = v(k−1)

v(k) =
w

‖w‖2
λ(k) = (v(k))TAv(k).

Theorem 6.2.4. Rayleigh quotient iteration converges to an eigenvalue/eigenvector pair for
all except a set of measure zero of starting vectors v(0). When it converges, the convergence is
ultimately cubic in the sense that if λJ is an eigenvalue of A and v(0) is sufficiently close to the
corresponding eigenvector qJ , then

‖v(k+1) −±qJ‖2 = O
(
‖v(k) −±qJ‖32

)
, |λ(k+1) − λJ | = O

(
|λ(k) − λJ |3

)
as k −→∞.

The ± signs are not necessarily the same on the two sides of the first equation.

Remark 6.2.5. We have cubic convergence for the Rayleigh quotient iteration if A is sym-
metric, otherwise it only has quadratic convergence.
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